Efecto de la adición de un suelo lacustre o ceniza volante en las propiedades de concretos hidráulicos
Abstract
This investigation evaluated the addition of a lakeside soil or fly ash as a supplementary material in the properties of ordinary and high strength concretes. The replacement levels were of 20% for both materials, while the fly ash was also used at 40%. The tests in the fresh condition included slump, temperature, volumetric weight and air content; while on the hardened state the tests included compressive strength and reactivity index after 1, 3, 7, 13, 28, 56 and 90 days. The coefficient of chlorides penetration was also analyzed. The results indicated that the lakeside soil did not show a noticeable effect on the fresh state characteristics of the concrete; nonetheless, on the hardened state, it reduced the strength and favored the penetration of chlorides.
Keywords: high strength concrete; activity index; suplementary materials.
Downloads
References
Arnal Simon L. (2005), Reglamento de construcciones para el distrito federal (comentado). México: Trillas.
Barger G.S., Hansen E.R., Wood M.R., Neary T., Beech D.J. and Jaquier D. (2001), Production and use of calcined natural pozzolans in concrete, Cement Concrete Aggregates 23 (2), pp. 73– 80.
Caldarone, M. A, Gruber, K. A., Burg, R. G. (1994), High reactivity metakaolin: A new generation mineral admixture, Concrete International, vol. 16, nº 11, pp. 37-40.
Chindaprasirt P., Rukzon S., Sirivivatnanon V. (2008), Resistance to chloride penetration of blended portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash, Construction and Building Materials 22. pp. 932-938.
Comisión Federal de Electricidad (1998). Cálculo y diseño de estructuras por el método de Duff Abrams. México, CFE.
Elinwa, A.U. (2005), Experimental characterization of portland cement-calcined soldierantmound clay cement mortar and concrete, Construction and Building Materials. Vol. 20, pp. 754-760.
Kosmatka Steven H., Kerkhoff B., Panarese William C., Tenesi J. (2004), Diseño y control de mezclas de concreto. Skokie,Illinois, EE.UU: Portland Cement Association.
Kostuch, J. A., Walters, V., Jones T. R. (1993), High performance concretes incorporating metakaolin: a Review, Concrete 2000, E&FN Spon, pp. 1799-1811.
Kuber Parande A., Ramesh Babu B., Aswin Karthik M., Deepak Kumaar K.K., Palaniswamy N. (2008), Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar, Construction and Building Materials, Volume 22, Issue 3, March 2008, pp. 127-134.
Lima Souza P. S., Dal Molin D. C.C. (2005). Viability of using calcined cáliz, from industrialbyproducts, as puzzolans of high reactivity. Cement and Concrete Research, Vol.35, pp.1993-1998.
Lorenzo-García M. P. (1993), Influencia de dos tipos de cenizas volantes españolas en la microestructura y durabilidad de la pasta de cemento portland hidratado. Tesis doctoral. Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Madrid, España.
Malhotra, V. M. and Ramezanianpour, A. A. (1994), Fly Ash in Concrete, Editor: V. M. Malhotra, CANMET, Ottawa, Canada.
Martínez, R.J. (2007), Caracterización de la reactividad puzolánica de materiales de origen natural, industrial y desperdicio agrícola, Tesis de Maestría, CIIDIR-IPN Unidad Oaxaca, México.
Martínez-Reyes J., Alavez-Ramírez R., Montes-García P., Jiménez-Quero V. (2010), Mineralogical effect on the pozzolanic reactivity of a Mexican lacustrine soil, Construction and Building Materials, vol. 24, no. 12, pp. 2650-2657.
Mehta K. y Monteiro P. (1998), Concreto, Estructura, propiedades y materiales. México: Instituto Mexicano del Cemento y Concreto A.C.
Mehta P. K., Aitcin P. C. (1990), Principles Underlying Production of High-Performance Concrete, Cement Concrete and Aggregates. CCAGDP, Vol. 12 No.2 Winter 1990, pp.70-78.
Neville A. M. (1999), Tecnología del concreto. México. Instituto Mexicano del Cemento y Concreto A.C.
Payá J., Manzó J., Borrochero M.V., Serna P. (2002), El factor de eficacia cementante depuzolanas siliceas y silicoaluminosas muy reactivas, VII Congreso Nacional depropiedades Mecánicas de Sólidos; Gandia. pp. 511-600.
Rahhal V., Talero R. (2004), Influence of two different fly ashes on the hydration of Portland cements, Olavarría, Argentina: Journal of Thermal Analysis and Calorimetry, Vol. 78, pp.191-205.
Ravina D. (1996), Mechanical properties of structural concrete incorporating a highvolume of class F fly ash as partial fine sand replacement, Materials and Structures vol. 31, pp. 84-90.
Young J. F., Mindess S., Gray J. R., Bentur A. (1998), The Science andTechnology of Civil Engineering Materials, New Jersey E.U.: Prentice-Hall.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.