Efecto de la adición de un suelo lacustre o ceniza volante en las propiedades de concretos hidráulicos

A. Martínez-Hernández, Pedro Montes-García, E. Moreno, A. Fernández-González

Abstract


En la presente investigación se evaluó el efecto de la adición de un suelo lacustre o ceniza
volante como material suplementario en las propiedades de concreto ordinario y de altas
prestaciones. El porcentaje de sustitución fue de 20% para el suelo y de 20 y 40% para la
ceniza volante. El estudio comprendió pruebas en estado fresco, tales como revenimiento,
temperatura, peso volumétrico y contenido de aire. En estado endurecido se determinó la
resistencia a la compresión y el índice de actividad resistente a los 1, 3, 7, 14, 28, 56 y 90
días; finalmente, se estimó el coeficiente de penetración de cloruros. Los resultados indican
que la adición de suelo lacustre natural como material suplementario no afecta de manera
importante las propiedades del concreto en estado fresco. Sin embargo, en estado endurecido
la incorporación de dicho material promovió la disminución de resistencia a la compresión y
afectó desfavorablemente su resistencia a la penetración de iones cloruros.


Keywords


Concreto de altas prestaciones; índice de actividad resistente; materiales suplementarios

Full Text:

PDF (Español)

References


Arnal Simon L. (2005), Reglamento de construcciones para el distrito federal (comentado). México: Trillas.

Barger G.S., Hansen E.R., Wood M.R., Neary T., Beech D.J. and Jaquier D. (2001), Production and use of calcined natural pozzolans in concrete, Cement Concrete Aggregates 23 (2), pp. 73–80.

Caldarone, M. A, Gruber, K. A., Burg, R. G. (1994), High reactivity metakaolin: A new generation mineral admixture, Concrete International, vol. 16, nº 11, pp. 37-40.

Chindaprasirt P., Rukzon S., Sirivivatnanon V. (2008), Resistance to chloride penetration of blended portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash, Construction and Building Materials 22. pp. 932-938.

Comisión Federal de Electricidad (1998). Cálculo y diseño de estructuras por el método de Duff Abrams. México, CFE.

Elinwa, A.U. (2005), Experimental characterization of portland cement-calcined soldier-antmound clay cement mortar and concrete, Construction and Building Materials. Vol. 20, pp. 754-760.

Kosmatka Steven H., Kerkhoff B., Panarese William C., Tenesi J. (2004), Diseño y control de mezclas de concreto. Skokie,Illinois, EE.UU: Portland Cement Association.

Kostuch, J. A., Walters, V., Jones T. R. (1993), High performance concretes incorporating metakaolin: a Review, Concrete 2000, E&FN Spon, pp. 1799-1811.

Kuber Parande A., Ramesh Babu B., Aswin Karthik M., Deepak Kumaar K.K., Palaniswamy N. (2008), Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar, Construction and Building Materials, Volume 22, Issue 3, March 2008, pp. 127-134.

Lima Souza P. S., Dal Molin D. C.C. (2005). Viability of using calcined cáliz, from industrialbyproducts, as puzzolans of high reactivity. Cement and Concrete Research, Vol.35, pp.1993-1998.

Lorenzo-García M. P. (1993), Influencia de dos tipos de cenizas volantes españolas en la microestructura y durabilidad de la pasta de cemento portland hidratado. Tesis doctoral. Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Madrid, España.

Malhotra, V. M. and Ramezanianpour, A. A. (1994), Fly Ash in Concrete, Editor: V. M. Malhotra, CANMET, Ottawa, Canada.

Martínez, R.J. (2007), Caracterización de la reactividad puzolánica de materiales de origen natural, industrial y desperdicio agrícola, Tesis de Maestría, CIIDIR-IPN Unidad Oaxaca, México.

Martínez-Reyes J., Alavez-Ramírez R., Montes-García P., Jiménez-Quero V. (2010), Mineralogical effect on the pozzolanic reactivity of a Mexican lacustrine soil, Construction and Building Materials, vol. 24, no. 12, pp. 2650-2657.

Mehta K. y Monteiro P. (1998), Concreto, Estructura, propiedades y materiales. México: Instituto Mexicano del Cemento y Concreto A.C.

Mehta P. K., Aitcin P. C. (1990), Principles Underlying Production of High-Performance Concrete, Cement Concrete and Aggregates. CCAGDP, Vol. 12 No.2 Winter 1990, pp.70-78.

Neville A. M. (1999), Tecnología del concreto. México. Instituto Mexicano del Cemento y Concreto A.C.

Payá J., Manzó J., Borrochero M.V., Serna P. (2002), El factor de eficacia cementante depuzolanas siliceas y silicoaluminosas muy reactivas, VII Congreso Nacional depropiedades Mecánicas de Sólidos; Gandia. pp. 511-600.

Rahhal V., Talero R. (2004), Influence of two different fly ashes on the hydration of Portland cements, Olavarría, Argentina: Journal of Thermal Analysis and Calorimetry, Vol. 78, pp.191-205.

Ravina D. (1996), Mechanical properties of structural concrete incorporating a highvolume of class F fly ash as partial fine sand replacement, Materials and Structures vol. 31, pp. 84-90.

Young J. F., Mindess S., Gray J. R., Bentur A. (1998), The Science andTechnology of Civil Engineering Materials, New Jersey E.U.: Prentice-Hall.




DOI: http://dx.doi.org/10.21041/ra.v1i3.16

Refbacks

  • There are currently no refbacks.


 

Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017