Reinforcement corrosion rate and crack width relationship in concrete beams exposed to simulated marine environment

  • Y. Hernández Centro de Estudios de Corrosión, Universidad del Zulia. Venezuela
  • O. Troconis de Rincón Centro de Estudios de Corrosión, Universidad del Zulia. Venezuela.
  • A. Torres Instituto Mexicano del Transporte. México
  • S. Delgado Centro de Estudios de Corrosión. Facultad de Ingeniería. Universidad del Zulia., Ciudad Universitaria, Maracaibo, Venezuela.
  • J. Rodríguez Dpto. Ingeniería Civil, Universidad de Granada. España
  • O. Morón Centro de Estudios de Corrosión, Universidad del Zulia. Venezuela.

Abstract

Reinforcement corrosion rate and crack width relationship in concrete beams exposed to simulated marine environment

ABSTRACT

This investigation presents an empirical correlation between the rebar corrosion rate and the corrosion-induced crack width propagation rate produced on beam's concrete cover, with or without load application to these beams. Reinforced concrete beams were evaluated, exposed to a natural corrosion process by spraying with 3.5 %w/w NaCl solution, to accelerate the rebar corrosion process, was performed with electrochemical tests. The beams corrosion-cracking evaluation was performed once every month, to determine the relation between crack width and the rebar corrosion loss. The results showed a direct relation between crack width propagation and rebar corrosion rate, showing wider cracks in the loaded beams.

Keywords: corrosion; reinforced concrete; loaded beams; crack widths.

 

Relación entre la velocidad de corrosión de la armadura y el ancho de fisuras en vigas de concreto armado expuestas a ambientes que simulan el medio marino 

RESUMEN

Esta investigación presenta una relación empírica entre la velocidad de corrosión de la armadura y la velocidad de ensanchamiento de fisuras por corrosión del recubrimiento de concreto en vigas, con o sin aplicación de carga. Se evaluaron vigas de concreto armado, expuestas a un proceso de corrosión natural mediante el rociado con solución salina al 3,5 %p/p de NaCl, para acelerar el proceso corrosivo de la armadura, mediante ensayos electroquímicos. El ancho de fisuras se evaluó mensualmente para estimar la relación existente entre éste y la pérdida de sección de la armadura. Los resultados demuestran que existe una relación directa entre la propagación del ancho de fisuras y la velocidad de corrosión, observando fisuras de mayor ancho en vigas cargadas.

Palabras clave: corrosion; concreto armado; vigas cargadas; ancho de fisuras.

 

Relação entre a velocidade de corrosão da armadura e a largura das fissuras em vigas de concreto armado expostas a ambientes que simulam o ambiente marinho

RESUMO

Esta pesquisa apresenta uma relação empírica entre a taxa de corrosão da armadura e a abertura de fissuras por efeito da corrosão da armadura em vigas de concreto, com ou sem aplicação de carga. Foram avaliadas vigas de concreto armado, expostas a um processo de corrosão natural por pulverização com solução salina a concentração de 3,5% de NaCl, para acelerar o processo de corrosão da armadura, mediante ensaios eletroquímicos. A abertura das fissuras foi avaliada mensalmente para estimar a relação entre ela e a perda de seção da armadura. Os resultados mostram que existe uma relação direta entre a propagação da abertura da fissura e a taxa de corrosão, observando a ocorrência de fissuras de maior abertura nas vigas sob carga.

Palavras-chave: corrosão; vigas de concreto armado sob carga; abertura de fissuras.

Downloads

Download data is not yet available.

References

ACI Committee 224 (1992), American Concrete Institute. Farmington Hills. Detroit, Michigan, USA.

Alonso C., Andrade C., Rodríguez J., Diez J. (1998), “Factors Controlling Cracking of Concrete Affected by Reinforcement Corrosionâ€. Materials and Structures. Vol. 31. pp. 435-441.

Andrade, C., Alonso, C., Molina, F. J. (1993). "Cover Cracking as a Function of Rebar Corrosion: Part I - Experimental Test", Materials and Structure, 26, pp. 453-464.

Cabrera, J. G. (1996), “Deterioration of concrete due to reinforcement steel corrosionâ€, Cem. & Conc. Composites, 18, pp. 47-59.

Geocisa e Instituto de Ciencias de la Construcción Eduardo Torroja. (2000), “Manual de Evaluación de Estructuras Afectadas por Corrosión de la Armaduraâ€, Proyecto de Innovación CONTECVET IN 309021.

Fagerlund, G. (1986), On the Capilarity of Concrete. Nordic Concrete Research. No.1 Olso Paper, No.6.

Hernández, Yolanda (2009), Evaluación de Microsílice en la Reparación de Vigas de Hormigón Armado Contaminado con Cloruros. Tesis Doctoral. Universidad de Granada, España. p. 1-165.

Norma ACI 211.1 (1993), “Proporcionamiento de Mezclas. Concreto Normal, Pesado y Masivoâ€.

Norma ASTM C 876 (2009), Standard test method for half-cell potentials of uncoated reinforcing steel in concrete.

Rodriguez, J., Ortega, L. M. & Casal, J. (1996), “Load bearing capacity of concrete columns with corroded reinforcementâ€, Proceedings 4th SCI International Symposium on Corrosion of Reinforcement in Concrete Construction, C.L. Page, P.B. Bamforth, and J.W. Figg eds., E&FN Spon, Cambridge, UK, pp.220-230.

Rodriguez, J., Ortega, L. M. & Casal, J. (1997), “Load carrying capacity of concrete structures with corroded reinforcementâ€, Constr. and Build. Mats. 11(4), pp. 239-248.

Sagües, A., Kranc, S., Moreno, P., Rey, D., Torres A., Yao, L. (2001). “Corrosion Forecasting for 75 Year Durability Design of Reinforced Concreteâ€, Final Report BA-502, University of South Florida. pp. 1-10.

Tachibana, Y., Maeda, K., Kajikawa, Y & Kawuamura, M. (1990), “Mechanical behaviour of RC beams damaged by corrosion of reinforcementâ€, in Corrosion of Reinforccement in Concrete, C.L. Page, K.W.J. Treadaway, and P.B. Bamforth eds., pp. 178-187.

Torres, A. (1999), “Cracking Induced by Localized Corrosion of Reinforcement in Chloride Contaminated Concreteâ€, Ph.D. Dissertation, University of South Florida.

Torres, A., Castro, P., & Sagüés, A. (1999). “Effect of Corrosion Rate in the Cracking Process of Concreteâ€, Proceedings of XIV National Congress of the Mexican Electrochemical Society, Merida, Mexico, August 24 – 28.

Torres, A., Martínez, M. (2001), “Diseño de Estructuras de Concreto con Criterios de Durabilidadâ€, Publicación Técnica No. 181. Instituto Mexicano del Transporte. ISSN 0188-7297. Querétaro, México. p. 1-86.

Torres, A., Martínez, M. (2003), “Remaining Structural Capacity of Concrete Beams with Localized Corrosion of the Embedded Reinforcing Steel. Materiales de Construcciónâ€, Vol. 53, No. 271-272. pp. 125-133.

Torres A., Navarro S., Terán J. (2007), “Residual flexure capacity of corroded reinforced concrete beamâ€, Engineering Structures. Vol. 29. pp. 1145-1152.

Torres, A., Sagüés, A., (2000), “Concrete Cover Cracking with Localized Corrosion of Reinforcing Steelâ€, Proceedings 5th CANMET/ACI Int. Conf. Durability of Concrete, V. Malhotra ed., ACI, Farmington Hills, Michigan, pp. 591-611.

Trocónis de Rincón, Oladis, y colaboradores (1997), “Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Concreto Armadoâ€. Red DURAR-CYTED. Programa Ibero-Americano de Ciencia y Tecnología para el Desarrollo. Subprograma XV, Corrosión/Impacto Ambiental en Materiales. ISBN 980-296-541-3. 1era Edición.

Tuutti K. (1982). “Corrosion of Steel in Concreteâ€, Swedish Cement and Concrete Research Institute. Sweden.

Published
2016-09-30
How to Cite
Hernández, Y., Troconis de RincónO., Torres, A., Delgado, S., RodríguezJ., & MorónO. (2016). Reinforcement corrosion rate and crack width relationship in concrete beams exposed to simulated marine environment. Revista ALCONPAT, 6(3), 272 - 283. https://doi.org/10.21041/ra.v6i3.152
Section
Applied Research