Effect of the addition of nanosilica particles on the properties of two cementitious matrices
Abstract
Effect of the addition of nanosilica particles on the properties of two cementitious matrices
ABSTRACT
This research focused on evaluating the effect of adding silica nanoparticles (NS) to two cementitious matrices, as ordinary portland and sulfoaluminate cement, in order to establish their influence on the mechanical and chemical properties. To conduct this evaluation, the NS were added in dosages of 0.30-to-5.0% by mass relative to cement. The results indicated that the compressive strength and resistance to chemical attack by sulfates were improved due to the addition of silica nanoparticles, in both matrices. Finally, the resistance to chemical attack by sulfates showed an improvement with the addition of silica nanoparticles when comparing with pure cement, suggesting an increase in the densification.
Keywords:Â Reactivity, supplementary cementitious materials.
Â
Modificación de las propiedades de matrices cementantes mediante la adición de partÃculas de nanosÃlice
RESUMEN
Este trabajo de investigación evaluó el efecto de la adición de nanopartÃculas de sÃlice (NS) a dos matrices cementantes, base cemento portland ordinario y cemento sulfoaluminoso, con el fin de establecer su influencia en las propiedades mecánicas y de resistencia quÃmica de dichos materiales. Para esto, se adicionaron las NS en dosificaciones de 0.30% a 5.0% en peso. Los resultados indicaron que la resistencia a la compresión y al ataque quÃmico por sulfatos, se ven mejoradas debido a la adición de NS. La resistencia al ataque quÃmico por sulfatos se mejoró de forma importante con la presencia de NS en comparación al cemento sin adiciones. Este resultado sugiere que ambas matrices presentaron una mayor densificación.
Palabras claves: Reactividad, materiales cementosos suplementarios.
Â
Modificação das propriedades de matrizes cimentÃcias através da adição de partÃculas de nanosÃlica
RESUMO
Este estudo avaliou o efeito da adição de nanopartÃculas de sÃlica (NS) em duas matrizes cimentÃcias, base cimento Portland comum e cimento sulfoaluminoso, a fim de estabelecer a sua influência sobre as propriedades de resistência mecânica e quÃmica dos referidos materiais. Para isso, foram adicionadas as NS em dosagens de 0,30% a 5,0% em massa. Os resultados indicaram que a resistência à compressão e ao ataque quÃmico por sulfatos são aumentadas devido à adição do NS. A resistência ao ataque quÃmico por sulfatos melhorou significativamente com a presença de NS em comparação com o cimento sem adições. Este resultado sugere que ambas as matrizes apresentaram uma maior densificação.
Palavras-clave: Reatividade, materiais cimentÃcios suplementares.
Downloads
References
ASTM C1012/C1012M – 15, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution.
Belkowit J. S., Armentrout D. (2010) “An investigation of Nano Silica in the Cement Hydration Processâ€, Proceeding 2010 Concrete Sustainability Conference, National Ready Mixed Concrete Association, U.S.A., pp. 1-15
Björnström J., Martinelli J., Matic A., Borjesson L., Panas I. (2004), “Accelerating effects of colloidal nano-Silica for beneficial calcium-silicate-hydrate formation in cementâ€, Chemistry Physic Letters; 392, pp. 242-248
Chung D. L. (2012) “Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacingâ€, Elsevier, CARBON 50, pp. 3342-3353
Hosseni P., Booshehrian A., Delkash M., Ghavami S., Zanjani M. K. (2009), “Use of Nano-SiO2 to Improve Microstructure and Compressive Strength of Recycled Aggregate Concretesâ€, Nanotechnology in Construction 3, pp 215-221
Hosseni P., Booshehrian A., Farshchi S. (2010), “Influence of Nano-SiO2 addition on Microstructure and mechanical Properties of Cement Mortars for Ferrocementâ€, Transportation Research Record; Journal of the transportation Research Board No. 2141, pp. 15-20
Jewell R. B. (2015) “Influence of Calcium Sulfoaluminate Cement on the Pullout Performance of Reinforcing Fibers: An Evaluation of the Micro-Mechanical Behaviorâ€, PhD Thesis, Civil Engineering, University of Kentuky.
Li H., Xiao H., J. Yuan, J. Ou (2004) “Microstructure of cement mortar with nano-particlesâ€, Composites Part B: Engineering, 35, pp. 185-189
Ma B., Ma M., Shen X., Li X., Wu X. (2014), “Compatibility between a polycarboxylate superplasticizer and the belite-rich sulfoaluminate cement: Setting time and the hydration propertiesâ€, Construction and Building Materials, 51, pp. 47-54
Mondal P., Shah S. P., Marks L. D., Gaitero J. J. (2010), “Comparative Study of the effect of Microsilica and Nanosilica in concreteâ€, Transportation Research Record; Journal of the transportation Research Board No. 2141, pp. 6-9
Morteza B., Baghbadrani M., Aslani F. (2014), “Performance of nano-Silica modified high strength concrete at elevated temperaturesâ€, Construction and Building Materials, 68, pp. 402-408
Norma NMX-C-085-ONNCCE-2010, Industria de la construcción - Cementos hidráulicos - Determinación estándar para el mezclado de pastas y morteros de cementantes hidráulicos
Norma NMX-C-414-ONNCCE-2010, Industria de la construcción-Cementantes- Especificaciones y método de ensayo.
Puertas F. Vázquez T. (2001), “Hidratación inicial del cemento. Efecto de aditivos superplastificantesâ€, Materiales de Construcción 51(262), pp 53-61.
Puertas F., Santos H., Palacios M., MartÃnez S. (2005), “Polycarboxylate superplaticizer admixtures: effect on hydration, microestructure and rheological behavior in cement pastesâ€, Advances in Cement Research, 17, pp. 77-89
Qing Y., Zenan Z., Deyu K., Rongshen C. (2007), “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fumeâ€, Construction and Building Materials 21(3), pp. 539–545
Quercia G., Zpuesz P., Hüsken G., Brouwers J. (2012), “Effects of Amorphous Nano-Silica additions on Mechanical and Durability Performance of SCC Mixturesâ€, Proceedings of the International Congress on Durability of Concrete (ICDC 2012), 18-21 June, Trondheim, Norway, pp. A2-A4
Raki L., Beaudoin J., Alizadeh R., Makar J. Sato T. (2010), “Cement and Concrete Nanoscience and Nanotechnologyâ€, Materials, 3(2), 918-942
San Filippo J. M., Muñoz J. F., Isabel Tejedor M., Anderson M. A., Cramer S. M. (2009), “Nanotechnology to Manipulate the aggregate-Cement Paste Bond Effects on Mortar Performanceâ€, Nanotechnology in Construction 3, pp. 29-33
Shah S. P., Konsta-Gdoutos M. S., Metaxa Z. S., Mondal P. (2009), “Nanoscale Modification of Cementitious Materialsâ€, Nanotechnology in Construction 3, Proceedings of the NICOM3, pp. 125-130
Sobolev K., Flores I., Torres-Martinez L. M., Valdez P. L., Zarazua E., Cuellar E. L. (2009) “Engineering of SiO2 Nanoparticles for Optimal Performance in Nano Cement-Based Materialsâ€; Proceedings of the Nanotechnology in Construction 3 (NICOM3) 01/2009; pp. 139-148.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.