Compression resistance of concretes with blast furnace slag. Re-visited state-of-the-art

  • J. A. Cabrera-Madrid Facultad de Ingeniería, Universidad Autónoma de Chiapas
  • J. I. Escalante-García Centro de Investigación y de Estudios Avanzados del IPN Unidad Saltillo
  • P. Castro-Borges Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida
Keywords: slag; carbonation; industrial byproduct; and corrosion

Abstract

A state-of-the-art revision of the BFS-PC cementing system was done, emphasizing its effect on the mechanical compressive strength of the concrete. The use of the cementing characteristics of the BFS with high levels of replacements is viable, making it possible to improve the compressive strength, and in some cases, the resistance to the corrosion of the steel; said improvement will depend on the amount of BFS and on the exposure environment of the concrete. In this work, the replacements of BFS were confirmed as beneficial, up to 70% in humid microclimates or marine environments, and up to 50% in environments susceptible to carbonation. In these ranges, higher replacement efficiency with regard to resistance to compression can be achieved.

Keywords: slag; carbonation; industrial byproduct; and corrosion.

Downloads

Download data is not yet available.

References

AASHTO-M240-00. (2000), Blended hydraulic cements.

AASHTO-M302-00. (2000), Ground granulated blast-furnace slag for use in concrete and mortars.

Abdelkader, B., El-Hadj, K., Karim, E. (2010), “Efficiency of granulated blast furnace slag replacement of cement according to the equivalent binder concept”, Cement and Concrete Composites, 32: pp. 226-231.

Aguilar, O. A. M., Castro-Borges, P., Escalante-García, J. I. (2010), “Hydraulic binders of Fluorgypsum–Portland cement and blast furnace slag, stability and mechanical properties”, Construction and Building Materials, 24: pp. 631-639.

Amrane, A. and Kenai, S. (1994). “Propriétés mécaniques et durabilité du béton au laitier en climat chaud”, in Proceedings of the international seminar on the quality of concrete in hot climate. (Ghardaia, Algeria).

Arezoumandi, M., Volz, J. S. (2013), “Effect of fly ash replacement level on the shear strength of high-volume fly ash concrete beams”, Journal of Cleaner Production, 59: pp. 120-130.

AS-3972. (2010), General purpose and blended cements, (Australia).

Ashtiani, M. S., Scott, A. N., Dhakal, R. P. (2013), “Mechanical and fresh properties of high-strength self-compacting concrete containing class C fly ash”, Construction and Building Materials, 47: pp. 1217–1224.

ASTM-C-989-99. (1999), Standard specification for ground granulated blast-furnace slag for use in concrete and mortars.

ASTM-C595-00. (2000), Standard Specification for Blended Hydraulic Cements. (USA)

Atis, C. D., Bilim, C. (2007), “Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag”, Building and Environment, 42: pp. 3060–3065.

Atis, C. D. (2003), “Accelerated carbonation and testing of concrete made with fly ash”, Construction and Building Materials, 17: pp. 147–152.

Bagheri, A. (2013), “Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash”, Construction and Building Materials, 47: pp. 1402–1408.

Berndt, M. L. (2009), “Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate”, Construction and Building Materials, 23: pp. 2606-2613.

Bilim, C., et al. (2009), “Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network”, Advances in Engineering Software. 40: pp. 334–340.

Bouikni, A., Swamy, R. N., Bali, A. (2009), “Durability properties of concrete containing 50% and 65% slag”, Construction and Building Materials, 23: pp. 2836–2845.

Cassgnabere, F., Mouret, M. and Escadeillas, G. (2009), “Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties”, Cement and Concrete Research, 39,1: pp. 1164-1173.

Chidiac, S. E., Panesar D. K. (2008), “Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days”, Cement and Concrete Composites, 30: pp. 63-71.

Council, U. S. G. B. (2014), LEED For New Construction Fact Sheet. http://www.usgbc.org].

Day, K. W. (2006), Concrete Mix Design, Quality Control and Specification. (NY, EE. UU). p. 7.

Feret, R. (1982), “Sur la Compacité des mortiers hydrauliques”, Annales des ponts et Chaussées, 4,7: pp. 155-164.

Gambhir, M. L. (2009), Concrete Technology, Theory and Practice. (U.K): p. 3.

GjØrv, O. E., Sakai, K. (2000), Concrete technology for a sustainable development in the 21st century. (London: E & FN Spon). P. 281.

Hadjasadok, A. et al. (2012), “Durability of mortar and concretes containing slag with low hydraulic activity”, Cement and Concrete Composites, 34: pp. 671-677.

Hooton, R. D. (2000), “Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete”, Canadian Journal of Civil Engineering, 27: pp. 754 - 760.

Hwang, C. L., Shen, D. H. (1991), “The effects of blast furnace slag and fly ash on the hydration of Portland cement”, Cement and Concrete Research, 21: pp. 410-425.

IRAM-5000-0. (2000), “Cemento. Cemento para uso general. Composición, características, evaluación de la conformidad y condiciones de recepción”, (Argentina).

IRAM-5000-1. (2000), “Cemento. Cemento con propiedades especiales”, (Argentina).

Johari, M. A. M., et al. (2011), “Influence of supplementary cementitious materials on engineering properties of high strength concrete”, Construction and Building Materials. 25: pp. 2639–2648.

Kosmatka, S. H. (2004), “Diseño y control de mezclas de concreto”, Portland Cement Asociation (PCA), (México). P. 25.

Kriker, A. (1992), “Durabilité du béton à base de laitier”, (Francia: ENP Alger): p.

Lea, F. M. (1971), “The Chemistry of Cement and Concrete”. (N.Y. USA): p 414.

Lee, N. K., Lee, H. K. (2013), “Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperatura”, Construction and Building Materials, 47: pp. 1201-1209.

Li, Q., Li, Z., Yuan, G. (2012), “Effects of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material”, Construction and Building Materials, 35: pp. 687–692.

Li, Y. (2011), “Microestructure and properties of high performance concrete with steel slag powder”, Materials Science Forum, 675-677: pp. 503-506.

Lubeck, A., et al. (2012), “Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag”, Cement and Concrete Composites, 34: pp. 392–399.

Malhotra, V. M., Mehta, P. K. (1996), “Pozzolanic and cementitious materials”. Advances in Concrete Technology. (UK): p. 102.

Mostafa, N. Y., et al. (2001), "Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag”, Cement and Concrete Research, 31: pp. 899 - 904.

NCh148.Of68. (1968), Cemento - Terminología, clasificación y especificaciones generales, (Chile).

Nedi, M. (2001), “Ternary and quaternary cements for sustainable development”. American Concrete Institute, 23,4: pp. 34-42.

NMX-C414-ONNCCE. (1999), Industria de la construcción. Cementos hidráulicos –Especificaciones y métodos de prueba, (México).

NTC-30. (1996), Cemento portland. Clasificación y nomenclatura, (Colombia).

Oner, A., Akyuz, S. (2007), “An experimental study on optimum usage of GGBS for the compressive strength of concrete”, Cement and Concrete Composites, 29: pp. 505 - 514.

Osborne, G. J. (1999), “Durability of Portland blast furnace slag cement concrete”, Cement and Concrete Composites, 21: pp. 11-21.

Pal, S. C., Mukherjee, A., Pathakc, S. R. (2003), “Investigation of hydraulic activity of ground granulated blast furnace slag in concrete”, Cement and Concrete Research, 33: pp. 1481 - 1486.

Polder, R. B. (1996), “The influence of blast furnace slag, fly ash and silica fume on corrosión of reinforced concrete in marine environment”, Heron, 41,4: pp. 287-300.

Puertas, F. (1993), “Escoria de alto horno: composición y comportamiento hidráulico”, Materiales de Construcción, 43,229: pp. 37 - 48.

Ramezanianpour, A. A., Malhotra, V. M. (1995), “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume”, Cement and Concrete Composites, 17: pp. 125-133.

Sánchez, R., Palacios, M., Puertas, F. (2011), “Cementos petroleros con adición de escoria de horno alto, características y propiedades”, Materiales de Construcción, 61, 302: pp. 185-211.

Shariq, M., Prasad, J., Masood, A. “Effect of GGBFS on time dependent compressive strength of concrete”, Construction and Building Materials, 24: pp. 1469–1478.

Shetty, M. S. (2013), “Concrete technology - Theory and practice”, (India: S. Chand): p. 201.

Siddique, R. (1971), “Waste Materials and Byproducts in concrete”, (Berlin, Alemania): p 36.

Siddique, R., Bennacer, R. (2012), “Use of iron and steel industry by-product (GGBS) in cement paste and mortar”, Resources, Conservation and Recycling, 69: pp. 29– 34.

Slag Cement Association. LEED-NC 2.1, (2005). Guide: Using slag cement in sustainable construction. Available from: www.slagcement.org.

SP43. Australian Technical Infraestructure Committee. (2012), Cementitious materials for concrete, (Australia).

Topç, I. B., Boga, A. R. (2010), “Effect of ground granulate blast furnace slag on corrosion performance of steel embedded in concrete”, Materials and Desing, 31: pp. 3358-3365.

UNE-EN-197-1. (2013), Cemento. Parte I: Composición, especificaciones y criterios de conformidad de los cementos comunes. (España)

Walker, R., Pavia, S. (2011), “Physical properties and reactivity of pozzolans, and their influence on the properties of lime-pozzolan pastes”, Materiales and Structures, 4,6: pp. 1139-1150.

Wan, H., Shui, Z., Lin, Z. (2004), “Analysis of geometric characteristics of GGBS particles and their influences on cement properties”, Cement and Concrete Research, 34: p. 133-137.

Wang, L. K., Hung, Y. T., Shammas, N. K. (2010), Handbook of Advanced Industrial and Hazardous Wastes Treatment, (E. U.: CRC Press Taylor & Francis Group): p. 170.

Yeau, K. Y., Kim, E. K. (2005), “An experimental study on corrosion resistance of concrete with ground granulate blast furnace slag”, Cement and Concrete Research, 35: pp. 1391-1399.

Published
2016-03-16
How to Cite
Cabrera-Madrid, J. A., Escalante-García, J. I., & Castro-Borges, P. (2016). Compression resistance of concretes with blast furnace slag. Re-visited state-of-the-art. Revista ALCONPAT, 6(1), 64 - 83. https://doi.org/10.21041/ra.v6i1.116
Section
Review