Evaluación de mezclas de hormigón para el nuevo canal de Panamá mediante la medida de la resistividad y de la resistencia a la difusión de cloruros

  • C. Andrade Centro de Investigación en Seguridad y Durabilidad de Estructuras y Materiales, CISDEM (CSIC-UPM), IETcc-CSIC, España.
  • N. Rebolledo IETcc-CSIC-España
  • A. Castillo IETcc-CSIC-España
  • F. Tavares IETcc-CSIC-España
  • R. Pérez GUPC: Grupo Unidos por el Canal (Sacyr)
  • M. Baz GUPC: Grupo Unidos por el Canal (Sacyr)

Abstract

RESUMEN

El Canal de Panamá fue construido hace unos 100 años y en la actualidad el consorcio “Grupo Unidos por el Canal†(GUPC), coordinado por Sacyr S.A. está construyendo dos nuevas series de esclusas. El hormigón del antiguo Canal no estaba armado pero en el actual se prevé el uso de armadura como parte del diseño antisísmico. La Autoridad del Canal de Panamá (ACP), en su Pliego de condiciones definió una vida útil de 100 años para lo que especificó valores del método ASTM 1202 de menos de 1000 culombios y el cálculo de la vida útil mediante un programa. En el presente trabajo se detallan, para algunas de las mezclas diseñadas, los resultados obtenidos tanto de culombios como de resistividad y los coeficientes de difusión que se obtuvieron mediante difusión natural. Igualmente se muestran los resultados al introducir los valores en el método numérico de cálculo de vida útil LIFEPRED.

Palabras clave: hormigón; cloruros; resistividad; difusión.


ABSTRACT

The Panama Canal was built about 100 years ago and a two new sets of locks are being constructed by the consortium "Grupos Unidos por el Canal" (GUPC) which is coordinated by Sacyr S.A. The old Panama Canal was built without steel reinforcement but the new one considered reinforcement as part of the antiseismic design. The Panama Canal Authority (ACP), established a lifespan of 100 years, for which it specified values from the ASTM 1202 method lower than 1000 Coulombs and the estimation of the lifespan by means of a program. The results of both Coulombs resistivity and diffusion coefficients, obtained after natural diffusion, are discussed for some of the designed mixtures. The numerical calculations of service lifespan, as obtained by LIFEPRED method, are also shown.

Keywords: concrete; chlorides; resistivity; diffusion.

Downloads

Download data is not yet available.

References

Andrade C. and Tavares F. LIFEPRED. Service Life prediction program. 2012.

Andrade C. 2004, Calculation of initiation and propagation periods of service-life of reinforcements by using the electrical resistivity. International Symposium on Advances in Concrete through Science and Eng., RILEM Symposium, March 22-24, Evanston (Illinois, USA).

Andrade C., Castellote M., D’Andrea R. (2011), Measurement of ageing effect of chloride diffusion coefficients in cementitious matrices- Journal of Nuclear Materials, 412. 209-216.

Andrade C., Whiting D. (1996), A comparison of chloride ion diffusion coefficients derived from concentration gradients and non-steady state accelerated ionic migration. Materials and structures, RILEM, vol 29, October, pp476-484.

Andrade, C. (1993). -Calculation of chloride diffusion-coefficients in concrete from ionic migration measurements. -Cement and Concrete Research 23(3): 724-742.

Andrade, C., J. L. Sagrera, et al. (2000). Several years study on chloride ion penetration into concrete exposed to Atlantic Ocean water. 2nd International Rilem Workshop on Testing and Modelling the Chloride Ingress into Concrete 19: 121-134.

ASTM 1202 (2010). Standard Test Method for Electrical Indication of Concrete’s Ability to resist Chloride Ion Penetration. Annual Book of ASTM Standards.

ASTM C1543- 10a Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding

Baroghel-Bouny V., Wang X. and Thiéry M. (2010), Prediction of chloride binding isotherms by analytical model or numerical inverse analysis-Proceedings of the 2nd Symposium on Service Life Design for Infrastructures. (DBMC Service life). Delft University of Technology. October.

Crank J., 1975 - The mathematics of diffusion- Ed. Oxford University.

Gulikers, J. (2004), “Critical evaluation of service life models applied on an existing marine concrete structureâ€. -NORECON Seminar 2004: Repair and Maintenance of Concrete Structures, Copenhagen April 19-20, (2004).

Mangat, P.S., Molloy, B.T. (1994), Predicting of long term chloride concentration in concrete. Materials and Structures, 27, 338-346.

Saetta A., Scotta R., Vitaliani R. (1993), Analysis of chloride diffusion into partially saturated concrete24 - ACI Materials Journal 90, 441–451.

Sagüés A.A. (2003), Modeling the Effects of Corrosion on the Lifetime of Extended Reinforced Concrete Structures, Corrosion, October 854-866.

Tuutti, K. (1982), “Corrosion of steel in concreteâ€, Swedish Cement and Concrete Institute (CBI) nº 4-82. Stockholm.

Published
2014-05-30
How to Cite
Andrade, C., Rebolledo, N., Castillo, A., Tavares, F., PérezR., & Baz, M. (2014). Evaluación de mezclas de hormigón para el nuevo canal de Panamá mediante la medida de la resistividad y de la resistencia a la difusión de cloruros. Revista ALCONPAT, 4(2), 96 - 112. https://doi.org/10.21041/ra.v4i2.1
Section
Study Case