The usage of infrared thermography to study thermal performance of walls: a bibliographic review

Graziela Pereira Silva, Pedro Igor Bezerra Batista, Yeda Vieira Póvoas


This article aims to present the influence of infrared thermography on masonry walls to detect pathological manifestations. A systematic review was carried out through research with automatic search and snow-balling, selection and sifting of articles to restrict the articles to the desired theme. After this, it was studied infrared thermography in the pathological manifestations, the thermal properties and their behavior, thermal bridges, temperature difference and air infiltrations. In general, some care must be taken during the execution of experiments and measurements. It has also been shown that infrared thermography is a simple technique and needs to be used.


infrared thermography; thermal performance; pathological manifestations; thermal properties; air leaks.


ABNT - Associação brasileira de normas técnicas. (2013a). “NBR 15575: Edificações habitacionais – Desempenho Parte 1 – 6”. Rio de Janeiro.

ABNT - Associação brasileira de normas técnicas. (2013b). “NBR 15572: Ensaio não destrutivos – Termografia Infravermelha – Guia para inspeção de equipamentos elétricos e mecánicos”. Rio de Janeiro.

ABNT - Associação brasileira de normas técnicas. (2005). “NBR 15220: Desempenho térmico das edificações Parte 1 – 5”. Rio de Janeiro.

ABNT - Associação brasileira de normas técnicas. (2010). “NBR 15866: Ensaios não destrutivos – Termografia - Metodologia de avaliação de temperatura de trabalho de equipamentos em sistemas elétricos”. Rio de Janeiro.

ABNT - Associação brasileira de normas técnicas. (2009). “NBR 15763: Ensaios não destrutivos – Termografia – Critérios de definição de periodicidade de inspeção em sistemas elétricos de potencia. Rio de Janeiro.

Albatici, R., Passerini, F., Tonelli, A. M., Gialanella, S. (2013), “Assessment of the thermal emissivity value of building materials using an infrared thermovision technique emissometer”, Energy and buildings, V.66, p.33-40.

Albatici, R., Tonelli, A. M. (2010), “Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site”, Energy and Buildings, V.42, No.11, p.2177-2183.

Asdrubali, F., Baldinelli, G., Bianchi, G. (2012), “A quantitative methodology to evaluate thermal bridges in buildings”, Applied Energy, V.97, p.365-373.

ASTM. (2013a). “C1046-95: Standard practice for in-situ measurement of heat flux and temperature on building envelope components”, (West Conshohocken, United States: ASTM International), p. 10.

ASTM. (2013b). “C1155-95: Standard practice for determining thermal resistance of building envelope components from the in-situ data”, (West Conshohocken, United States: ASTM International), p. 8.

ASTM. (2015a). “C1060-11a: Standard practice for thermographic inspection of insulation installations in envelope cavities of frame buildings”, (West Conshohocken, United States: ASTM International), p. 7.

ASTM. (2015b). “C1153-10: Standard practice for location of wet insulation in roofing systems using infrared imaging”, (West Conshohocken, United States: ASTM International), p. 6.

Aversa, P., Palumbo, D., Donatelli, A., Tamborrino, R., Ancona, F., Galietti, U., Luprano, V. A. M. (2017), “Infrared thermography for the investigation of dynamic thermal behaviour of opaque building elements: Comparison between empty and filled with hemp fibres prototype walls”, Energy and Buildings, V.152, p.264-272.

Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., Jayakumar, T. (2013), “Infrared thermography for condition monitoring – A review”, Infrared Physics & Technology, V.60, p.35-55.

Barr, E. S. (1961), “The infrared pioneers—I. Sir William Herschel”. Infrared Physics, v. 1, p. 1-2.

Bianchi, F., Pisello A. L., Baldinelli G., Asdrubali, F. (2014), “Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup”, Sustainability, V. 10, No. 6, p.7107-7120.

Brás, A., Gonçalves, F., Faustino, P. (2014), “Cork-based mortars for thermal bridges correction in a dwelling: Thermal performance and cost evaluation”, Energy and Buildings, V.72, p.296–308.

Cani, B. F., Marinoski, D. L., Lamberts, R. (2012), “Aplicação da termografia infravermelha para verificação da temperatura em telhas cerâmicas com diferentes teores de umidade e condições de limpeza da superficie” in: XIV Encontro Nacional de Tecnologia do Ambiente Construído - XIV ENTAC, Juíz de Fora: MG (BR).

Castro, J. L. B. B. (2010), “Quantificação dos coeficientes de transmissão térmica lineares - pontes térmicas”, Dissertação de Mestrado – Faculdade de Engenharia da Universidade do Porto, Portugal, p.314.

Ciocia, C., Marinetti, S. (2012). “In-situ emissivity measurement of construction materials”, in: 11th International Conference on Quantitative InfraRed Thermography, Napoly: Italy.

Clark, M., McCann, D., Forde, M. (2003), “Application of infrared thermography to the nondestructive testing of concrete and masonry bridges”. NDT&E International, V.36, No. 4, pp. 265- 275.

Danielski, I., Fröling, M. (2015). “Diagnosis of buildings’ thermal performance - a quantitative method using thermography under non-steady state heat flow”, Energy Procedia, V.83, p.320-329.

Datcu, S., Ibos, L., Candau, Y., Mattei¨, S. (2005), “Improvement of building wall surface temperature measurements by infrared thermography”, Infrared Physics & Technology, V. 46, p. 451-467.

Decreto-Lei Nº 80/2006. (4 de Abril de 2006). Regulamento das características do Comportamento Térmico dos Edifícios (RCCTE).

Diao, R., Sun, L., Yang, F. (2018), “Thermal performance of building wall materials in villages and towns in hot summer and cold winter zone in China”, Applied Thermal Engineering, V. 128, p. 517-530.

Directive 2010/31/EU Of The European Parliament and of the Council. (2010). Disponível em: <> Acessado em: 13 de Junho de 2018.

Donatelli, A., Aversa, P., Luprano, V. A. M. (2016), “Set-up of an experimental procedure for the measurement of thermal transmittances via infrared thermography on lab-made prototype walls”, Infrared Physics & Technology, V. 79, p. 135-143.

EIA. U.S. Energy information administration. (2018). Disponível em: Acessado em: 15 de Junho de 2018.

EN. (1999), “13187: Thermal performance of buildings. Qualitative detection of thermal irregularities in building envelopes. Infrared method”, (London, United Kingdom: British Standards Institution), p. 16.

FLIR-Forward Looking Infrared. (2017). “User’s manual FLIR Cx Series” (Wilsonville, United States: FLIR), p. 67.

Ghahramani, A., Castro, G., Karvigh, S. A., Becerik-Gerber, B. (2018), “Towards unsupervised learning of thermal comfort using infrared thermography”, Applied Energy, V. 211, p. 41-49.

Green Building Council Brasil. (2015), “O consumo de energia nas edificações do Brasil”. Disponível em: Acesso em: 03 de julho de 2018.

Grinzato, E., Bison, P.G., Marinetti, S. (2002). “Monitoring of ancient buildings by the thermal method”, Journal of Cultural Heritage, V.3, p. 21–29.

Grinzato, E., Vavilov, V., Kauppinen, T. (1998). “Quantitative infrared thermography in buildings”, Energy and Buildings, V.29, No.1, p. 1-9.

ISO (2015), “6781-3: Performance of buildings -- Detection of heat, air and moisture irregularities in buildings by infrared methods -- Part 3: Qualifications of equipment operators, data analysts and report writers”, (Geneva, Suíça: International Organization for Standardization), p. 18.

ISO (2008), “13790: Energy performance of buildings -- Calculation of energy use for space heating and cooling”, (Geneva, Suíça: International Organization for Standardization), p. 167.

Jorge, L. F. A. (2011). “Determinação do coeficiente de transmissão térmica em paredes de edificios”, Dissertação de Mestrado, Universidade da Beira Interior, Portugal, p. 112.

Kylili, A., Fokaides, P. A., Christou, P., Kalogirou, S. A. (2014). “Infrared thermography (IRT) applications for building diagnostics: A review”, Applied Energy, V.134, p.531-549.

Lai, W. W., Lee, K., Poon, C. (2015). “Validation of size estimation of debonds in external wall’s composite finishes via passive Infrared thermography and a gradient algorithm”, Construction and Building Materials, V. 87, p. 113-124.

Lerma, C., Barreira, E., Almeida, R. M. S. F. (2018). “A discussion concerning active infrared thermography in the evaluation of buildings air infiltration”, Energy and Buildings, V. 168, p. 56-66.

Lucchi, E. (2018). “Applications of the infrared thermography in the energy audit of buildings: A review”, Renewable and Sustainable Energy Reviews. v. 82, parte 3, p. 3077-3090.

Maldague, X. (2001). “Infrared and Thermal testing: Nondestructive testing handbook. 3th ed, Columbus, OH: Patrick O. Moore, 2001.

Marino, B. M., Muñoz , N., Thomas, L. P. (2016). “Estimation of the surface thermal resistances and heat loss by conduction using thermography”, Applied Thermal Engineering, V. 114, p. 1213-1221.

Marinoski, D. L., Souza, G. T., Sangoi, J. M., Lamberts, R. (2010). “Utilização de imagens em infravermelho para análise térmica de componentes construtivos”, in: XIII Encontro Nacional de Tecnologia do Ambiente Construído, Canela: Rio Grande do Sul (BR).

Marques, T. H.T., Chavatal, K. M. S. (2013). “A Review of the Brazilian NBR 15575 standard:applying the simulation and simplified methods for evaluating a social house thermal performance”, in: Symposium on Simulation for Architecture and Urban Design, San Diego: Califórnia (EUA).

Meola, C. (2012), Infrared thermography: recent advances and future trends. Bentham Books, Italy, p.24-26. eISBN: 978-1-60805-143-4.

Milovanović, B., Pečur, I. B., Štirmer, N. (2016). “The methodology for defect quantification in concrete using ir thermography”, Journal of civil engineering and management, V. 23, p. 573-582.

O’Grady, M, Lechowska, A. A., Harte, A. M. (2017b). “Infrared thermography technique as an in-situ method of assessing heat loss through thermal bridging”, Energy and building, V.135, p. 20-32.

O'Grady, M., Lechowska, A.A., Harte, A. M. (2017a). “Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography Technique”, Applied Energy, V.208, p. 1038-1052.

Pei, C., Qiu, J., Liu, H., Chen, Z. (2016). “Simulation of surface cracks measurement in first walls by laser spot array thermography”, Fusion Engineering and Desing, V.109-111, parte B, p. 1237-1241.

Porras-Amores, C, Mazzarrónb, F.R., Canas, I. (2013), “Using quantitative infrared thermography to determine indoor air temperature”, Energy and Building, V.65, p.292-298.

Rajic, N. (2002), “Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures”, Composite Structures, V. 58, p. 521-528.

Robinson, A. J., Lesage, A. F. J., Reilly, A., Mcgranaghan, G., Byrne, G., O’hegarty, R., Kinnane, O. (2017), “A New Transient Method for Determining Thermal Properties of Wall Sections”, Energy and Buildings, V. 142, p. 139-146.

Rocha, J. H. A., Póvoas, Y. V. (2017). “A termografia infravermelha como um ensaio não destrutivo para a inspeção de pontes de concreto armado: Revisão do estado da arte”, Revista ALCONPAT, V. 7, nº 3.

Savastano Junior, H., Pimentel, L. L. (2000). “Viabilidade do aproveitamento de resíduos de fibras vegetais para fins de obtenção de material de construção”, Revista Brasileira de Engenharia Agrícola e Ambiental - Agriambi, V. 4, n. 1, p. 103-110.

Silva, E. P., Cahino, J. E. M., Melo, A. B. (2012), “Avaliação do desempenho térmico de blocos EVA”, in: XIV Encontro Nacional de Tecnologia do Ambiente Construído, Juíz de Fora: Minas Gerais (BR).

Simões, I., Simões, N, Tadeu, A., Riachos, J. (2014), “Laboratory assessment of thermal transmittance of homogeneous building elements using infrared thermography”, in: 12th International Conference on Quantitative InfraRed Thermography, Bordeaux: France.

Smith, R. A., Jones, F. E., Chasmar, R. P. (1958), The Detection and Measurement of Infrared Radiation, Oxford University Press.

Tanic, M., Stankovic, D., Nikolic, V., Nikolic, M., Kostic, D., Milojkovic, A., Spasic, S., Vatin, N. (2015). “Reducing Energy Consumption by Optimizing Thermal Losses and Measures of Energy Recovery in Preschools”, Procedia Engineering, v. 117, p. 919 – 932.

Viégas, D. J. A. (2015). “Utilização de termografia infravermelha em fachadas para verificação de descolamento de revestimentos”, Dissertação de Mestrado – Escola Politécnica da Universidade de Pernambuco, Recife, p. 164.



  • There are currently no refbacks.


Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017