Cracks width-corrosion rate correlation on the durability of reinforced concrete in a very high aggressiveness tropical marine environment

Andrés Antonio Torres Acosta, Oladis Troconis de Rincón, Valentina Milano, Yolanda Hernández-López

Abstract


The aim of this investigation was to evaluate the correlation between crack width and apparent corrosion rate in reinforced concrete specimens exposed for more than six years to a tropical marine environment, at the natural test site La Voz, Venezuela. Six specimens from DURACON Project (prismatic 15x15x60 cm, with 0.65 w/c ratio) were monitored; each specimen having six reinforcing steel bars placed at three different depths (two each at 15, 20, and 30 mm) for electrochemical tests (corrosion potential and corrosion rate). An empirical correlation between surface crack propagation rate and iCORR was established, which may help iCORR estimation indirectly if values of maximum surface crack widths due to reinforcement corrosion are obtained in at least one-year period of monitoring.


Keywords


reinforced concrete; marine environment; corrosion rate; cracks width

References


Almusallam, A. A., Al-Gahtani, A. S., Maslehuddin, M., Khan, M. M., Aziz, A. R. (1997), Evaluation of Repair Materials for Functional Improvement of Slabs and Beams with Corroded Reinforcement. Proc. ICE-Struct. Build 122 (1): 27-34.

Cabrera, J.G. (1996), Deterioration of concrete due to reinforcement steel corrosion, Cement and Concrete Composites, 18 (1), pp. 47-59. https://doi.org/10.1016/0958-9465(95)00043-7

Cabrera-Madrid, J. A., Balancán-Zapata, M., Torres-Acosta, A. A., Castro-Borges, P. (2014) “Effect of tropical marine microclimates on depassivation and corrosion-induced cracking of reinforced concrete,” International Journal of Electrochemical Science, vol. 9, pp. 8211 – 8225, ISSN: 1452-3981.

Feliú, S., González, J. A., Feliú, V., Feliú, S. Jr., Escudero, M. L., Rodríguez Maribona, I. A., Ausin, V., Andrade, M. C., Bolano, J. A., Jimenez, F. (1933), Corrosion detecting probes for use with a corrosion-rate meter for electrochemically determining the corrosion rate of reinforced concrete structures, U.S., Patent 5259944 A.

González, J. A., Andrade, C., Alonso, C., Feliú, S. (1995), Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded Steel reinforcement. Cement and Concrete Research, 25 (2), pp. 257-264. https://doi.org/10.1016/0008-8846(95)00006-2

Hernández, Y., de Rincón, O., Torres, A., Delgado, S., Rodríguez, J. (2016), “Relación entre la Velocidad de Corrosión de la Armadura y el Ancho de Fisuras en Vigas de Concreto Armado Expuestas a Ambientes que Simulan el Medio Marino”. Revista ALCONPAT, 6 (3), pp. 272-283. DOI: http://dx.doi.org/10.21041/ra.v613.152.

Huang, R., Yang, C. C. (1997), Condition Assessment of Reinforced Concrete Beams Relative to Reinforcement Corrosion. Cement and Concrete Composites, 19 (2), pp. 131-137. https://doi.org/10.1016/S0958-9465(96)00050-9

ISO 9223:2012 (latest revision), “Corrosion of metals and alloys -- Corrosivity of atmospheres -- Classification, determination and estimation”, (Geneva, Switzerland: ISO).

Mangat, P. S., Elgarf, M. S. (1999), “Strength and serviceability of repaired reinforced concrete beams undergoing reinforcement corrosion”. Magazine of Concrete Research, 51 (2), pp. 97-112. https://doi.org/10.1680/macr.1999.51.2.97

Rodriguez, J., Ortega, L. M., Casal, J. (1997), Load carrying capacity of concrete structures with corroded reinforcement, Construction and Building Materials, 11 (4), pp. 239-248. https://doi.org/10.1016/S0950-0618(97)00043-3

Tachibana, Y., Maeda, K. I., Kajikawa, Y., Kawamura, M. (1990). “Mechanical behaviour of RC beams damaged by corrosion of reinforcement. Corrosion of Reinforcement in Concrete” in Third International Symposium on Corrosion of Reinforcement in Concrete Construction, paper no. 00606810: Elsevier Science Publishers/CICC Publications, ISBN: 1-85166-487-4, May 21-24, p. 178-187.

Torres Acosta, A.A. (1999) “Cracking induced by localized corrosion of reinforcement in chloride contaminated concrete”, Ph.D. Thesis, University of South Florida, Tampa, FL.

Torres Acosta, A. A., Martínez Madrid, M. (2003), Residual Life of Corroding Reinforced Concrete Structures in Marine Environment. Journal of Materials in Civil Engineering, 15 (4), pp. 344-353. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(344)

Torres Acosta, A. A., Hernández, Y., Troconis de Rincón, O., Delgado, S., Rodríguez, J. (2007). “Agrietamiento de vigas de concreto por corrosión del acero de refuerzo cuando se les aplica una carga externa permanente,” Boletín del Instituto Mexicano del Transporte (IMT), Notas 109, N°2, http://ww.imt.mx/SitioIMT/Boletines/resumen-boletines.aspx?IdArticulo=314&IdBoletin=110 (Aug. 05, 2014).

Torres-Acosta, A. A. and Castro-Borges, P. (2013). “Corrosion-Induced Cracking of Concrete Elements Exposed to a Natural Marine Environment for Five Years”, Corrosion, v. 69, No. 11, November, pp. 1122-1131, ISSN: 0010-9312.

Troconis de Rincón, O., et al. (2007), “Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED”. Corrosion Science, 49 (7), pp. 2832-2843, https://doi.org/10.1016/j.corsci.2007.02.009

Vidal, T., Castel, A., Françoise, R. (2004), “Analyzing crack width to predict corrosion in reinforced concrete”, Cement and Concrete Research, 34 (1), pp. 165-174. https://doi.org/10.1016/S0008-8846(03)00246-1




DOI: http://dx.doi.org/10.21041/ra.v8i3.321

Refbacks

  • There are currently no refbacks.


 

Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017