Limitations of sorptivity and water permeability for the estimation of the chloride penetration rate in concrete regarding the accomplishment of prescriptive design for durability in the marine environment

Yury A Villagrán Zaccardi, María E Sosa, Ángel A Di Maio

Abstract


This paper presents an analysis of experimental data from conventional concrete regarding sorptivity and penetrability under pressure comparing these parameters to chloride diffusion rate determined in the laboratory and in actual marine environment. Prescriptions for durability assurance of reinforced concrete structures is based on the qualitative characterization of transport properties. For the specific case of the marine environment, it is required to assess the resistance of concrete to chloride ingress. The results show the limitations of both parameters as prescriptive indexes, with capillary absorption rate showing some advantages over water penetration under pressure.


Keywords


capillary absorption; water penetration; chloride; durability; prescriptive design

References


America Concrete Institute (2016), "ACI 201.2R-16 Guide to Durable Concrete", Farmington Hills, USA, p. 84.

America Concrete Institute (2003), "ACI 222.3R-03 Design and Construction Practices to Mitigate Corrosion of Reinforcement in Concrete Structures", Farmington Hills, USA, 29p.

Andrade, C. (1993), "Calculation of chloride diffusion coefficients in concrete from ionic migration measurements", Cement and Concrete Research, Vol. 23, pp. 724-742. https://doi.org/10.1016/0008-8846(93)90023-3

Andrade, C., Castellote, M., Alonso, C., González, C. (2000) "Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part I: Comparison between several methods of calculation", Materials and Structures, Vol. 33, pp. 21-28. https://doi.org/10.1007/BF02481692

Andrade, C., Alonso, C., Sarria, J. (2002) “Corrosion rate evolution in concrete structures exposed to the atmosphere”, Cement & Concrete Composites, Vol. 24, pp. 55-64. https://doi.org/10.1016/S0958-9465(01)00026-9

Andrade C., Prieto, M., Tanner, P., Tavares, F., d’Andrea, R. (2013) "Testing and modelling chloride penetration into concrete", Construction and Building Materials, Vol. 39, pp. 9–18. https://doi.org/10.1016/j.conbuildmat.2012.08.012

Andrade, C., Climent, M. A., de Vera, G. (2015) "Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface", Materials and Structures, Vol. 48, pp. 863-869. https://doi.org/10.1617/s11527-015-0543-4

Anoop, M. B., Rao, K. B., Rao, T. V. S. R. A. (2002), “Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environments”, Engineering Structures, Vol. 24, pp. 1229-1242. https://doi.org/10.1016/S0141-0296(02)00060-3

Basheer, P. A. M. (2001), "Permeation Analysis", in: Ramachandran, V. S., Beaudoin, J. J. (Eds.), Handbook of analytical techniques in concrete science and technology. Principles, Techniques and Applications, Noyes Publications, New Jersey (USA), pp. 658-737.

Bjegović, D., Serdar, M., Oslaković, I. S., Jacobs, F., Beushausen, H., Andrade, C., Monteiro, A. V., Paulini, P., Nanukuttan S. (2015) "Test Methods for Concrete Durability Indicators", in: Beushausen, H., Fernández Luco, L. (Eds.), Performance Based Specifications and Control of Concrete Durability. State-of-the-Art Report RILEM TC 230-PSC, Springer, New York (USA), pp. 51-105. https://doi.org/10.1007/978-94-017-7309-6_4

British Standards Institution (2013), " BS EN-206: Concrete. Specification, performance, production and conformity," (London, UK: CEN), p. 106.

CCAA (2009) “Chloride Resistance of Concrete”, (Sydney, Australia: Cement Concrete & Aggregates Australia), p. 37.

CIRSOC 201-2005 (2005), "Proyecto de Reglamento Argentino de Estructuras de Hormigón", (Buenos Aires, Argentina: INTI), p. 452.

Climent, M. A., de Vera, G., López, J. F., Viqueira, E., Andrade, C. (2002), "A test method for measuring chloride diffusion coefficients through non-saturated concrete. Part I: the instantaneous plane source diffusion case", Cement and Concrete Research, Vol. 32, p. 1113–1123. https://doi.org/10.1016/S0008-8846(02)00750-0

Collepardi, L., Marcialis, A., Turriziani, R. (1970), “La cinetica di penetrazione degli ioni cloruro nel calcestruzzo”, Il Cemento, N°67, pp. 157-164.

Delagrave, A., Bigas, J. P., Ollivier, J. P., Marchand, J., Pigeon, M. (1997a), “Influence of the interfacial zone chloride diffusivity of mortars”, Advanced Cement Based Materials, Vol. 5, pp. 86-92. https://doi.org/10.1016/S1065-7355(96)00008-9

Delagrave, A., Marchand, J., Ollivier, J. O., Juliens, S., Hazrati, K. (1997b), "Chloride binding ca-pacity of various hydrated cement paste systems", Advanced Cement Based Materials, Vol. 6, pp. 28-35. https://doi.org/10.1016/S1065-7355(97)90003-1

Di Maio, A. A., Eperjesi, L., Gassa, L., Traversa, L. P., Zerbino, R. L., (2000) “Exposed reinforcement: Assessment of corrosion activity”, Concrete International, Vol. 22, Nº3, pp. 47-51.

Di Maio, A. A., Lima, L. J., Traversa, L. P. (2004) “Chloride profiles and diffusion coefficients in structures located in marine environments”, Structural Concrete, Vol. 5, Nº1, pp. 1-4. https://doi.org/10.1680/stco.2004.5.1.1

DURAR (1997), “DURAR - Manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado”, (Maracaibo,Vanezuela: CYTED), p. 205.

Fernández Luco, L.(2001), “La durabilidad del Hormigón: su relación con la estructura de poros y los mecanismos de transporte de fluidos”, in: E. F. Irassar (Ed.), Durabilidad del Hormigón Estructural, AATH, Buenos Aires (Argentina), pp. 1-45.

Frederiksen, J. M., Sørensen, H. E., Andersen, A., Klinghoffer, O. (1997) "HETEK, The effect of the w/c ratio on chloride transport into concrete - Immersion, migration and resistivity tests", (Copenhagen, Denmark: The Road Directorate), 35 p. https://doi.org/10.13140/2.1.3735.3600

Glass, G. K., Buenfeld, N. R. (2000), “The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete”, Corrosion Science, Vol. 42, pp. 329-344. https://doi.org/10.1016/S0010-938X(99)00083-9

IRAM 1554 (1983), "Hormigón de Cemento Pórtland. Método de determinación de la penetración de agua a presión en el hormigón endurecido", (Buenos Aires, Argentina: IRAM), p. 13.

IRAM 1857 (2000), "Determinación del contenido de ión cloruro en el hormigón". (Buenos Aires, Argentina: IRAM), p. 19.

IRAM 1871 (2004), "Hormigón. Método para la determinación de la capacidad y velocidad de succión capilar de agua para hormigón endurecido", (Buenos Aires, Argentina: IRAM), p. 12.

Kropp, J., Basheer, L. (2000) "Assessment of the durability of concrete from its permeation properties: A Review", in: Basheer, P.A.M. (Ed.), V CANMET/ACI International Conference on Durability of Concrete, Barcelona (Spain).

Monosi, S., Moriconi, G., Alverá, I. (1989), “Effect of water/cement ratio and curing time on chloride penetration into concrete”, Materials Engineering, Vol. 1, pp. 483-489.

Neville, A. M. (1977), "Concrete Technology, Volume 1", (Mexico D.F., Mexico: IMCyC), p. 383.

Nielsen, E. P., Geiker, M. R. (2003), "Chloride diffusion in partially saturated cementitious material", Cement and Concrete Research, Vol. 33, p. 133-138. https://doi.org/10.1016/S0008-8846(02)00939-0

Rostam, S. (2000), “Vida útil de las estructuras de hormigón. Cómo satisfacer los requerimientos del nuevo milenio”, Hormigón, N°36, pp. 11-44.

Saetta, A. V., Scotta, R. V., Vitaliani, R. V. (1993), "Analysis of chloride diffusion into partially saturated concrete", ACI Materials Journal, Vol. 90, p. 441–451.

Sandberg, P., Tang, L., Andersen, A. (1998), “Recurrent studies of chloride ingress in uncracked marine concrete at various exposure times and elevations”, Cement and Concrete Research, Vol. 28, pp. 1489-1503. https://doi.org/10.1016/S0008-8846(98)00124-0

Song, H. -W., Lee, C. -H., Ann, K. Y., (2008) “Factors influencing chloride transport in concrete structures exposed to marine environments”, Cement & concrete Composites, Vol. 30, pp. 113-121. https://doi.org/10.1016/j.cemconcomp.2007.09.005

Taus, V. L., “Análisis de la Succión Capilar en Hormigones: Influencia de distintos Parámetros de Ensayo”, MSc Thesis, UNCPBA, (2010) p. 170.

Taus, V. L., Villagrán, Y. A., Di Maio, A. A. (2008), "Influence of curing conditions on transport properties of blended cement concrete", in: Pazzini et al. (Eds.), Fifth ACI/CANMET International Conference on High-Performance Concrete Structures and Materials, Manaos (Brazil).

Traversa, L. P. (2001) “Corrosión de armaduras en atmósferas rurales, urbanas, marinas e industriales”, in: E.F. Irassar (Ed.), Durabilidad del Hormigón Estructural, AATH, Buenos Aires (Argentina), pp 217-257.

Traversa, L. P., Di Maio, A. A. (2002) “Difusión de cloruros en el hormigón”, in: L. P. Traversa, A. A. Di Maio (Eds.), Memoria Jornadas Tecnológicas sobre Corrosión de Armaduras en Estructuras de Hormigón: Evaluación, Diagnóstico y Reparación, AATH, Mar del Plata (Argentina), pp. 87-95.

Tuutti, K.(1982), “Corrosion of steel in concrete”, PhD Thesis, SCCI, CIB, Research Report No. 4, p. 468.

Villagrán Zaccardi, Y. A.(2012), "Estimaciones del ingreso de cloruro en hromigón y de la despasivación localizada de armaduras", PhD Thesis, UNLP, p. 226.

Violini, D., Giaccio, G., Milanesi, C. A., Zerbino, R. (2006), "Efecto del contenido de caliza, en las propiedades del hormigón. Parte 3: Evaluación de la durabilidad", in: Sota et al. (Eds.), 16ª Reunión Técnica de la Asociación Argentina de Tecnología del Hormigón, Córdoba (Argentina).

Zhang, Y., Zhang, M. (2014), "Transport properties in unsaturated cement-based materials – A review", Construction and Building Materials, Vol. 72, p. 367-379. https://doi.org/10.1016/j.conbuildmat.2014.09.037




DOI: http://dx.doi.org/10.21041/ra.v8i3.302

Refbacks

  • There are currently no refbacks.


 

Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017