Sustainability evaluation of different techniques for concrete mixing based on quality control

  • L. M. Reynosa-Morales Faculty of Engineering, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas.
  • F. J. Olguín-Coca Institute of Basic Sciences and Engineering, Autonomous University of the State of Hidalgo, Pachuca, Hidalgo
  • H. A. Guillén-Trujillo Faculty of Engineering, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas.
  • F. A. Alonso-Farrera Faculty of Engineering, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas.
  • P. Castro-Borges Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6 Antigua Carretera a Progreso, C.P. 97310, Mérida, Yucatán, México
  • A. López-González Faculty of Engineering, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas.
  • G. Ramos-Torres Department of Civil Engineering and Mines, University of Sonora, Hermosillo, Sonora.
Keywords: emergy analysis, environmental accounting, sustainability, transformity, concrete

Abstract

Sustainability evaluation of different techniques for concrete mixing based on quality control

ABSTRACT

In this study emergy analysis, an environmental valuation method was applied to concrete mixing with the purpose of evaluating its dependence on non-renewable natural resources. Three concrete mixing techniques, industrialized, semi-industrialized and manual, were evaluated based on quality control. The quantity of environmental resources used in production was measured in terms of equivalent solar energy. The resulting transformities were compared to show that emergy analysis is sensible to local context and the limits of the reference system. The results obtained show that concrete mixing is highly dependent on external resources. Semi-industrialized concrete was found to be the most sustainable.

Keywords: emergy analysis; environmental accounting; sustainability; transformity; concrete.


Evaluación de la sustentabilidad de diferentes técnicas de producción de concreto hidráulico basado en su control de calidad

RESUMEN

En este trabajo, se aplicó un método de valoración ambiental en la producción concreto con el fin de evaluar su dependencia de los recursos naturales no renovables. Tres técnicas de producción basadas en su control de calidad: industrializada, semi-industrializada y manual; se evalualuaron mediante eMergía. Esto se realizó para medir la cantidad de uso de los recursos del medio ambiente en términos de energía solar equivalente. Las Transformidades resultantes se compararon con el fin de poner de manifiesto que el análisis de eMergía es sensible al contexto local y los límites del sistema de referencia. Los resultados obtenidos muestran una alta dependencia en la producción de concreto sobre las fuentes de recursos externos, siendo el concreto semi-industrializado el más sustentable.

Palabras clave: Análisis eMergético; contabilidad ambiental; sustentabilidad; transformidad; concreto hidráulico.

  

Avaliaçao da sustentabilidade de tres métodos de produçao de concreto com base no controle de qualidade

RESUMO

Este trabalho apresenta um método de avaliação ambiental na produção de concreto, baseado no consumo de recursos naturais não-renováveis. Três técnicas de produção (industrializada, semi-industrializada e manual) foram avaliadas sob o controle de qualidade eMergia. Este conceito foi utilizado para medir a quantidade do uso de recursos do meio ambiente em termos de energia solar equivalente. Os resultados foram comparados a fim de mostrar que a análise eMergia é sensível ao contexto local e aos limites do sistema de referência. Os resultados mostram uma alta dependência da produção de concreto em relação às fontes de recursos externos, sendo o concreto semi-industrializado o mais sustentável, segundo esta análise.

Palavras chave: análise eMergética; contabilidade ambiental; sustentabilidade; transformidade; concreto.

Downloads

Download data is not yet available.

References

Ascione, M., Campanella, L., Cherubini, F., & Ulgiati, S. (2009). Environmental driving forces of urban growth and development. An emergy-based assessment of the city of Rome, Italy. Landscape and Urban Planning, 93(3–4), 238–249.

Abel, T. (2015). Convergence and divergence in the production of energy transformation hierarchies. Ecological Modelling, 4–11.

Agostinho, F., Bertaglia, A., Almeida , C., & Gianett, B. (2015). Influence of cellulase enzyme production on the energetic–environmental performance of lignocellulosic ethanol. Ecological Modelling, 46–56.

Aguilar Rivera, N., Alejandre Rosas, J., & Espinosa López, R. (2015). Emergy evaluation and LCA in sugar agribusiness in Veracruz, Mexico. INCA Cultivos Tropicales, 2015, vol. 36, no. 4, 144-157. (Spanish)

Bargigli, S., & Ulgiati , S. (2003). Emergy and Life-Cycle assesment of steel production in Europe. Gainesville, Florida, E.U.: University of Florida.

Bastianoni , S., Galli , A., Pulselli , R. M., & Niccolucci, V. (2007). Environmental and economic evaluation of natural capital appropriation through building construction: practical case study in the Italian context. Ambio.

Bastianoni, S., Morandi, F., Flaminio, T., Pulselli, R. M., & Tiezzi, E. B. (2011). Emergy and emergy algebra explained by means of ingenuous set theory. Ecological Modelling, 2903– 2907.

Berardi, U. (2012). Sustainability assessment in the construction sector: rating systems and rated buildings. Sustainable Development, 411-424.

Björklund, J., Geber, U., & Rydberg, T. (2001). Emergy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. Resources, Conservation and Recycling, 293 - 316.

Brown , M. T., & Buranakarn, V. (2003). Emergy indices and ratios for sustainable material cycles and recycle options. Resources, Conservation and Recycling, 1 - 22.

Brown , M. T., Odum , H. T., & Jorgensen , S. E. (2004). Energy hierarchy and transformity in the universe. Ecological Modelling, 17 - 28.

Brown , M., & Ulgiati , S. (2004). Emergy Analysys and Environmental Accounting. Earth Systems and Environmental Sciences, 329 - 354.

Brown, M. T., & McClanahan, T. R. (1992). Emergy analysis perspectives of Thailand and Mekong river dam proposals. Final Report to the Cousteau Society. Gainesville, FL.: Center for Wetlands and Water Resources, University of Florida.

Buranakarn, V. (1998). Evaluation of recycle and reuse of building materials using the emergy analysis method. Ph.D. Dissertation. University of Florida, FL.

Burón Maestro, M. (2012). Concrete and sustainability: Regulations. Sostenibilidad: Eficiencia Energética, Evaluación de edificios y estructuras. Madrid, España: IECA. (Spanish)

Campbell, E. (2015). Emergy analysis of emerging methods of fossil fuel production. Ecological Modelling, 57–68.

CEIEG. (2016). Comité Estatal de Información Estadística y Geográfica. Gobierno del Estado de Chiapas. Obtenido de http://www.ceieg.chiapas.gob.mx/perfiles/Inicio

Doherty, S. J., Scatena, F. N., & Odum, H. T. (1994). Emergy Evaluation of the Luquillo Experimental Forest and Puerto Rico. Final Report to International Institute of Tropical Forestry. Rio Piedras, Puerto Rico.

Emergy Synthesis, 8. (2015). Emergy and environmental accounting: Theories, applications, and methodologies. Ecological Modelling, 1-3.

Ferreira C, Ó. I., Hurtado S, M. d., García, E., Bonilla Correa, C. R., & M. Rao, I. (2010). Emergy of three agroforestry systems in the south region of the municipality. ACTA AGRONÓMICA. 59 (3), 327-337. (Spanish)

Guillén, H. A. (1998). Sustainability of Ecotourism and Traditional Agricultural Practices in Chiapas, México. Gainesville, Florida, E.U.: Tesis Doctoral.

Gutierrez, L. (2003). El concreto y otros materiales para la construcción. Manizales, Colombia.: Centro de publicaciones de la Universidad Nacional de Colombia Sede Manizales.

Hamza, N., & Horne, M. (2007). Educating the designer: An operational model for visualizing low-energy architecture. . Building and Environment, 3841-3847.

INEGI. (2015). Encuesta mensual de la industria manufacturera. Estadísticas históricas de México 2014-2015.

Josa, A., Aguado, A., Cardim , A., & Byars, E. (2007). Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cement Concrete Research, 781 - 788.

Josa, A., Aguado, A., Heino, A., Byars, E., & Cardim, A. (2004). Comparative analysis of available life cycle inventories of cement in the EU. Cement Concrete Research, 1313 - 1320.

Kjellsen , K., Guimaraes , M., & Nilsson, A. (2005). The CO2 Balance of Concrete in a Life Cycle Perspective. Danish Technological-DTI.

Lacarrière, B., Deutz, K., Jamali Zghal , N., & Le Corre, O. (2015). Emergy assessment of the benefits of closed-loop recycling accounting for material losses. Ecological Modelling, 77–87.

Li, L., Lu, H., Tilley , D., & Qiu, G. (2014). Effect of time scale on accounting for renewable emergy in ecosystems located in humid and arid climates. Ecological Modelling, 1–8.

López Villalobos, I. D., & Rodríguez Salcedo, J. (2013). Energy analysis of environmental sustainability of the municipality of Palmira (Colombia). Revista de Investigación Agraria y Ambiental. Vol. 4 No. 2. (Spanish)

Mendoza Sánchez, J. F. (2014). Sustainability criteria for highways in Mexico.. Sanfandila: Publicación Técnica No. 392, Instituto Mexicano del Transporte. (Spanish)

Morandi, F., Campbell, D. E., Pulselli, F. M., & Bastianoni, S. (2015). Emergy evaluation of hierarchically nested systems: application to EU27 Italy and Tuscany and consequences for the meaning of emergy indicators. Ecological Modelling, 12–27.

Mu, H., Feng, X., & Chu, K. H. (2012). Calculation of emergy flows within complex chemical production systems. Ecological Engineering, 88– 93.

Nazar, M. (2013). Estimación An estimation of greenhouse emissions of multifamily social interest housing. Tuxtla Gutiérrez, Chiapas: Doctoral Thesis. (Spanish)

Nisbet , M., & Van Geem, M. G. (1997). Environmental life cycle inventory of Portland cement and concrete. World Cement, 3.

Odum, H. T. (1971). Environment. Power and Society. Wiley, New York, NJ.

Odum, H. T. (1983). Environment. Power and Society. Wiley, New York, NJ.

Odum, H. T. (1988). Self organization, transformity and information. Science, 1132 - 1139.

Odum, H. T. (1996). Environmental Accounting Emergy and Environmental Decision Making. New York, NJ.: Johl Wiley and Sons, Inc.

Ortega Rodríguez, E., Vallim de Melo, C., & Del Pozo Rodríguez P, P. (2014).Energy analysis as a tool for analyzing sustainability of two productive systems. Revista Ciencias Técnicas Agropecuarias Vol. 23, No. 4, 59-63. (Spanish)

Pade , C., & Guimaraes, M. (2007). The CO2 uptake of concrete in a 100 year perspective. Cement Concrete Research, 1348-1356.

Pulselli , R. M., Simoncini , E., F.M. Pulselli, F. M., & Bastianoni, S. (2007). Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy and Buildings, 620-628.

Pulselli , R. M., Simoncini, E., Ridolfi, R., & Bastianoni, S. (2008). Specific emergy of cement and concrete: An energy-based appraisal of building materials and their transport. Ecological Indicators, 647 - 656.

Ruiz de Arbulo Lopez, P., Landeta Manzano, B., Díaz de Basurto Uraga, P., & Arana Landín, G. (2016). Adoption of Ecodesign Management Systems in the construction sector. Analysis of the perspective of the different agents involved. Dyna, 124-133. (Spanish)

Suca A, F., Suca A, A., & Siche J, R. (2014). Emergy analysis of Peruvian coffee. Revista Peruana de Química e Ingeniería Química Vol. 17 N.º 1, 43-57. (Spanish)

Tennenbaum, S. E. (2015). Emergy and co-emergy. Ecological Modelling, 116–134.

Tilley, D. R. (2015). Transformity dynamics related to maximum power for improved emergy yield estimations. Ecological Modelling, 96–107.

Vega, L., Ordoñez, J., & Pinilla , G. (2013). Towards a systemic assessment of environmental impact (SAEI) regarding alternative hydrosedimentological management practice in the Canal del Dique, Colombia. Ingeniería e Investigación, 41-48.

Vilbiss , C., & Brown, M. (2015). New method to compute the emergy of crustal minerals. Ecological Modelling, 108–115.

Vold, M., & Ronning, A. (1995). LCA of Cement and Concrete. Stiftelsen.

Wright, C., & Ostergard, H. (2015). Scales of renewability exemplified by a case study of three Danish pig production systems. Ecological Modelling, 28–36.

Wu, X., Wu, F., Tong, X., Wu, J., Sun, L., & Peng, X. (2015). Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes. Resources, Conservation and Recycling, 40-50.

Zarba, L., & Brown , M. T. (2015). Cycling emergy: computing emergy in trophic networks. Ecological Modelling, 37–45.

Published
2017-01-31
How to Cite
Reynosa-Morales, L. M., Olguín-CocaF. J., Guillén-TrujilloH. A., Alonso-Farrera, F. A., Castro-Borges, P., López-GonzálezA., & Ramos-Torres, G. (2017). Sustainability evaluation of different techniques for concrete mixing based on quality control. Revista ALCONPAT, 7(1), 87-103. https://doi.org/10.21041/ra.v7i1.175
Section
Applied Research