Inspection of facades with Unmanned Aerial Vehicles (UAV): an exploratory study

  • Ramiro Daniel Ballesteros Ruiz University of Pernambuco, Recife
  • Alberto Casado Lordsleem Júnior University of Pernambuco, Recife
  • Joaquin Humberto Aquino Rocha Universidad Privada del ValleFacultad de Tecnología, Universidad Privada del Valle, Cochabamba http://orcid.org/0000-0002-3383-6379
Keywords: UAV, property inspection, visual inspection, monitoring, aerial photos

Abstract

The objective of this study was to evaluate the use of Unmanned Aerial Vehicles (UAVs) as a visual tool for the inspection of pathological manifestations in facades, through an exploratory study. Currently, the relevance of UAVsis growing as a new mechanism for obtaining data and visual inspection of buildings, optimizing time. The research strategy had three distinct steps: a literature review, an experimental procedure, and data processing, aiming to verify the viability of the inspection procedure. There is evidence of the convenience of UAV use, particularly where access is difficult, which reduces time and cost, generates greater security, and allows 3D reconstruction of the building under inspection, generating more accurate diagnoses.

Downloads

Download data is not yet available.

Author Biography

Joaquin Humberto Aquino Rocha, Universidad Privada del ValleFacultad de Tecnología, Universidad Privada del Valle, Cochabamba

http://lattes.cnpq.br/1787659871780888

References

Agostinho, S. L. (2012), “Inspeção e Monitorização de Estruturas em Engenharia Civil – Utilização de UAV na Inspeção e Monitorização”, Masther’s Thesis, Universidade da Madeira, p. 105.

Álvares, J., Costa, D. B., Melo, R. R. S., Bello, A. (2016). “Estudo exploratório de mapeamento 3D de canteiros de obras utilizando veículos aéreos não tripulados” in: VI ENTAC, São Paulo: São Paulo (Brasil).

Ballesteros, R. (2020), “Inspeção de manifestações patológicas de fachadas utilizando Veículo Aéreo Não Tripulado (VANT): estudo exploratório”, Masther’s Thesis, Escola Politécnica de Pernambuco, Universidade de Pernambuco, p. 220.

Brasil. Agência Nacional de Aviação Civil. Requisitos gerais para aeronaves não tripuladas de uso civil - RBAC-E nº 94. Resolução n. 419, 2 de maio de 2017. Brasília, 2017.

De Melo, R., Costa, D., Álvares, J., Irizarry, J. (2017), Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Safety Science. 98:174-185. https://doi.org/10.1016/j.ssci.2017.06.008

DJI (2017). Phantom 4 Pro Homepage. Recuperado em 26 de setembro de 2020 de https://dl.djicdn.com/downloads/phantom_4_pro/20170719/Phantom_4_Pro_Pro_Plus_User_Manual_EN.pdf

Emelianov, S., Bulgakow, A., Sayfeddine, D. (2014). “Aerial laser inspection of buildings facades using quadrotor” in: Creative Construction Conference, Prague (Czech Republic).

EXAME. Revista Online Grupo Abril. (2016). Recuperado em 26 de setembro de 2020 de https://www.exame.abril.com.br

Falorca, J. F., Lanzinha, J. C. G. (2020). Facade inspections with drones–theoretical analysis and exploratory tests. International Journal of Building Pathology and Adaptation, ahead-of-print. https://doi.org/10.1108/IJBPA-07-2019-0063

Flores-Colen, I., De Brito, J., De Freitas, V. (2018). Stains in facades’ rendering – Diagnosis and maintenance techniques’ classification. Construction and Building Materials. 22(3):211-221. https://doi.org/10.1016/j.conbuildmat.2006.08.023

Groetelaars, N. J. (2015), “Criação de modelos BIM a partir de nuvens de pontos: estudo de métodos e técnicas para documentação arquitetônica”, Doctoral Dissertation, Universidade Federal da Bahia, Faculdade de Arquitetura, Brasil.

Grosso, R., Mecca, U., Moglia, G., Prizzon, F., Rebaudengo, M. (2020). Collecting Built Environment Information Using UAVs: Time and Applicability in Building Inspection Activities. Sustainability. 12:4731. https://doi.org/10.3390/su12114731

Hung, M. N. W. B., Sampaio, T. V. M., Schultz, G. B., Siefert, C. A. C., Lange, D. R., Marangon, F. H. S., Santos, I. (2018). Levantamento com veículo aéreo não tripulado para geração de modelo digital do terreno em bacia experimental com vegetação florestal esparsa. Revista Ra'e Ga Espaço Geográfico em Análise. 43:215-231. http://dx.doi.org/10.5380/raega.v43i0.56621

ICAO - International Civil Aviation Organization. (2017). Remotely Piloted Aircraft System (RPAS) concept of operations for international IFR operations. ICAO (USA), p. 30.

Irizarry, J., Costa, D.B. (2016). Exploratory Study of Potential Applications of Unmanned Aerial Systems for Construction Management Tasks. Journal of Management in Engineering. 32(3):1-10. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000422

Kim, S., Irizarry, J., Costa, D. B., Mendes, A. T. C. (2016). “Lessons learned from unmanned aerial system-based 3D mapping experiments” in: 52nd ASC Anual International Conference, Provo: Utah (USA).

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P.,

Kleijnen, J., Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339:b2700–b2700. https://doi.org/10.1136/bmj.b2700

Mader, D., Blaskow, R., Westfeld, P., Weller, C. (2016). Potential of UAV-Based laser scanner and multispectral camera data in building inspection. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B1:1135-1142. https://doi.org/10.5194/isprs-archives-XLI-B1-1135-2016

Máthé, K., Buşoniu, L. (2015). Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection. Sensors. 15(7):14887-14916. https://doi.org/10.3390/s150714887

Melo Jr., C. M. (2016), “Methodology for generating façade damage maps from unmanned aerial vehicle photographs and digital image processing”, Doctoral Dissertation, Universidad de Brasilia, Brasil.

Melo, R. R. S., Costa, D. B. (2015). “Uso de veículo aéreo não tripulado (VANT) para inspeção de logística em canteiros de obra” in: SIBRAGEC-ELAGEC, São Carlos: São Paulo (Brasil).

Morgenthal, G., Hallermann, N. (2014). Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures. Advances in Structural Engineering. 17(3):289-302. https://doi.org/10.1260/1369-4332.17.3.289

Nascimento, M. L. M. (2017), “Utilização de drone e termografia na detecção de manifestações patológicas em edificações”, Monograph, Universidade Católica de Brasília, p. 21.

Nikolic, J., Burri, M., Rehder, J., Leutenegger, S., Huerzeler, C., Siegwart, R. (2013). “A UAV system for inspection of industrial facilities” in: 2013 IEEE Aerospace Conference, Big Sky: Montana (USA). https://doi.org/10.1109/AERO.2013.6496959

Pacheco, C., Vieira, G. (2017). “Metodologias para Inspeções de Fachadas de Edifícios” in: IV CIRMARE - Congresso Internacional na Recuperação, Manutenção e Restauração de Edifícios, São Paulo: São Paulo (Brasil).

Pierrot-Deseilligny, M., De Luca, L., Remondino, F. (2011). Automated image-based procedures for accurate

artifacts 3D modeling and orthoimage generation. Geoinformatics CTU FCE. 6:291-299. https://doi.org/10.14311/gi.6.36

PiórkowskI, D. T. (2008). “Rectification and Intermediate View synthesis”, Monograph, Universitat Politecnica de Catalunya, p. 47.

Pires, R., De Brito, J., Amaro, B. (2015). Inspection, Diagnosis, and Rehabilitation System of Painted Rendered Façades. Journal of Performance of Constructed Facilities. 29(2):1-9. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000534

Rakha, T., Gorodetsky, A. (2018). Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automation in Construction. 93:252–264. https://doi.org/10.1016/j.autcon.2018.05.002

Reagan, D., Sabato, A., Niezrecki, C. (2018). Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Structural Health Monitoring. 17(5):1056-1072. https://doi.org/10.1177/1475921717735326

Roca, R., Lagüela, S., Díaz-Vilariño, L., Armesto, J., Arias, P. (2013). Low-cost aerial unit for outdoor inspection of building façades. Automation in Construction. 36:128-135. https://doi.org/10.1016/j.autcon.2013.08.020

Rodriguez-Gonzalvez, P., Gonzalez-Aguilera, D., Lopez-Jimenez, G., Picon-Cabrera, I. (2014). Image-based modeling of built environment from an unmanned aerial system. Automation in Construction. 48:44-52. https://doi.org/10.1016/j.autcon.2014.08.010

Ruiz, R. D. B., Lordsleem Júnior, A. C., Fernandes, B. J. T., Oliveira, S. C. (2021). Unmanned Aerial Vehicles and Digital Image Processing with Deep Learning for the Detection of Pathological Manifestations on Facades. In: Toledo Santos E., Scheer S. (eds) Proceedings of the 18th International Conference on Computing in Civil and Building Engineering. ICCCBE 2020. Lecture Notes in Civil Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-51295-8_76

Shariq, M. H., Hughes, B. R. (2020). Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art. Renewable and Sustainable Energy Reviews. 130:109979. https://doi.org/10.1016/j.rser.2020.109979

Tondelo, P. G., Barth, F. (2019). Análise das manifestações patológicas em fachadas por meio de inspeção com VANT. PARC Pesquisa Em Arquitetura E Construção, 10, e019009. https://doi.org/10.20396/parc.v10i0.8652817

Vera-Rozo, E. (2016). Medición de contaminación mediante UAV (Vehículo Aéreo no Tripulado). Mundo FESC. 6(11): 16-26.

Yang, X., Qin, X., Wang, J., Wang, J., Ye, X., Qin, Q. (2015). Building Façade Recognition Using Oblique Aerial Images. Remote Sensing. 8(7): 10562-10588. https://doi.org/10.3390/rs70810562

Published
2021-01-01
How to Cite
Ballesteros Ruiz, R. D., Lordsleem Júnior, A. C., & Aquino Rocha, J. H. (2021). Inspection of facades with Unmanned Aerial Vehicles (UAV): an exploratory study. Revista ALCONPAT, 11(1), 88 - 104. https://doi.org/10.21041/ra.v11i1.517