Deterioro por corrosión de elementos de concreto armado de un edificio industrial

  • G. F. San Miguel Universidad Autónoma de Nuevo León, UANL, FIC, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451, México
  • M. R. Alvarado Av. El Roble #660, Col. Valle del Campestre, San Pedro Garza, Nuevo León, C.P. 66265, México
  • P. V. Tamez Universidad Autónoma de Nuevo León, UANL, FIC, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451, México
  • R. G. Alcorta Universidad Autónoma de Nuevo León, UANL, FIC, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451, México
  • R. M. Garza Av. El Roble #660, Col. Valle del Campestre, San Pedro Garza, Nuevo León, C.P. 66265, México
  • J. P. Farias Universidad Autónoma de Nuevo León, UANL, FIC, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451, México.

Abstract

RESUMEN

La corrosión de las estructuras de concreto armado se acentúa cuando son colocadas en ambientes con microclimas extremadamente agresivos. La habilidad para evaluar la corrosión de las varillas de refuerzo en estas estructuras y poder estimar la vida en servicio remanente es tema de estudios en muchas partes del mundo. Este trabajo muestra la importancia de implementar una metodología de inspección y diagnóstico que genere, a través del empleo de equipos especializados y tecnología de punta, datos confiables que permitan el desarrollo de procesos de planeación en las intervenciones de rehabilitación y/o mantenimiento de los elementos de concreto reforzado. El conjunto de resultados permitió la optimización de recursos humanos y materiales del usuario final.

Palabras Clave: Corrosión; concreto armado; evaluación; reparación.


ABSTRACT

Corrosion of reinforced concrete structures (RCS) is accentuated when there are placed in environments with extremely aggressive microclimates. In many parts of the world, the ability to evaluate the corrosion of rebars in these RCS and estimate the remaining service life is subject of study. This work shows that the implementation of an inspection and diagnosis methodology must generate reliable data, through the use of specialized equipment and technology. Additionally, the development of planning processes in rehabilitation interventions and/or maintenance of reinforced concrete elements should be privileged. The results obtained allowed the optimization of human and material resources of the end user.

Keywords: Corrosion; reinforced concrete; evaluation; rehabilitation.

Downloads

Download data is not yet available.

References

Andrade C., Castelo V., Alonso C. and Gonzalez J.A. (1986) The determination of corrosion rate of steel embedded in concrete by polarization resistance and AC impedance, Corrosion Effect of Stray Currents and the Techniques for Evaluating Corrosion of Rebars in Concrete, Ed: V. Chaker, ASTM STP 906, pp. 43 – 63.

Andrade C. and Alonso C. (1996) Corrosion rate monitoring in the laboratory and on-site, Construction and Building Materials, 10 (5), 315-328.

ASTM (2009) Standard C-876 Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete. Philadelphia. USA.

DURACON Collaboration. Trocόnis de Rincón O. and co-authors (2007) Effect of the Marine Environment on Reinforced Concrete Durability in Iberoamerican Countries: DURACON Project/CYTED, Corrosion Science, Elsevier Science LTD Publication, Volumen 49, Issue 7, pp. 2832-2843.

Fajardo G., Escadeillas G., Arliguie G. (2006) Electrochemical chloride extraction from steel reinforced concrete specimens contaminated from artificial sea–water, Corrosion Science, 48, 110–125, ISSN: 0010-938X, doi:10.1016/j.corsci.2004.11.015.

Fajardo G., Valdez P., Pacheco J. (2009) Corrosion of steel rebar in natural pozzolan based mortars exposed to chlorides, Construction & Building Materials, 23, Issue 2, 768-774, , ISSN: 0950-0618, doi:10.1016/j.conbuildmat.2008.02.023

Mehta P.K., Monteiro P. J. M. (2001) CONCRETE - Microstructure, Properties and Materials, October, 20.

Millard S., Harrison J. and Edwards A. (1989) British Journal Non-destructive Testing, 31, p. 616.

Morris W., Vico A., Vazquez M., and Sanchez S.R. (2002) Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements, Corrosion Science, 44, pp. 81 – 99.

RILEM TC 154-EMC: Electrochemical Techniques for Measuring Metallic Corrosion’Half-cell potential measurements, Elsener B., et al. (2003) Potential mapping on reinforced concrete structures, Materials and Structures / Matériaux et Constructions, Vol. 36, August-September, pp 461-471.

Sanchez M., Troconis de Rincón O., Sanchez E., Garcia D., Sanchez E., Sadaba M., Delgado S. and Troconis de Rincón O. y Miembros de la Red DURAR. Red Temática XV.B. (1997) Durabilidad de la Armadura. Manual De Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, CYTED ISBN 980-296-541-3. Maracaibo. Venezuela.

Troconis de Rincón O., Arrieta de Bustillos L., Vezga C. (2003) Evaluation, Diagnosis and Rehabilitation of Buildings in Rural Environments, Journal of Architecture & Environment. Vol.2, No. 1, pp. 45-54.

Troconis de Rincón O., Sánchez M., Pérez O., Contreras D., García O. y Vezga C. (1991) A Study of Practical Cases of Steel Corrosion in Reinforced Concrete. Causes and Solutions, Materials Performance, Vol. 30, No. 8, pp. 42-45

Published
2012-09-30
How to Cite
San Miguel, G. F., Alvarado, M. R., Tamez, P. V., Alcorta, R. G., Garza, R. M., & Farias, J. P. (2012). Deterioro por corrosión de elementos de concreto armado de un edificio industrial. Revista ALCONPAT, 2(3), 195 - 210. https://doi.org/10.21041/ra.v2i3.38
Section
Study Case