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ABSTRACT

The objective of this work is to review, according to the available literature, some of the conceptual
service life models for reinforced concrete in terms of durability, highlighting their contributions and
the aspects in which they evolved with respect to their predecessors. The journey is made
chronologically to the present time, beginning with the pioneering work of Tuutti in 1982. The
transition from phenomenological to temporal models is addressed, as well as from the prescriptive to
the performance point of view, and from the general vision to the specialized vision. One of the main
conclusions is that each model must adjust its validity to an age range through which the structure
transits, warning about the certainty of the predictions depending on the stage of service life to which
it is confined. The review ends with reflections on the present and future use of these conceptual
models.
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Revision de la evolucion de modelos conceptuales de vida de servicio para el
concreto reforzado.

RESUMEN

El objetivo de este trabajo es revisar, de acuerdo con la literatura disponible, algunos de los
modelos conceptuales de vida de servicio del concreto reforzado en términos de durabilidad,
resaltando sus contribuciones y los aspectos en los que evolucionaron con respecto a sus
antecesores. El recorrido se hace en forma cronoldgica hasta tiempos actuales iniciando con el
trabajo pionero de Tuutti de 1982. Se aborda la transicion de modelos fenomenoldgicos a
temporales, de lo prescriptivo al desempefio, y de la vision general a la vision especializada. Una
de las principales conclusiones es que cada modelo debe ajustar su validez a un rango de edad por
la que la estructura transite, advirtiendo sobre la certidumbre de las predicciones en funcion de la
etapa de vida de servicio a la que se acote. La revision finaliza con reflexiones sobre el uso presente
y futuro de estos modelos conceptuales.

Palabras clave: modelo conceptual; vida de servicio; durabilidad; desempefio; evolucion.

Revisdo da evolucdo dos modelos conceituais de vida util para concreto
armado.

RESUMO

O objetivo deste trabalho € revisar, de acordo com a literatura disponivel, varios dos modelos
conceituais de vida atil do concreto armado em termos de durabilidade, destacando suas
contribuicdes e os aspectos em que evoluiram em relacdo aos seus predecessores. A jornada é feita
cronologicamente até o presente, comecando com o trabalho pioneiro de Tuutti em 1982. A
transicdo dos modelos fenomenoldgicos para temporais é abordada, do prescritivo para a
performance, e da visdo geral para a visdo especializada. Uma das principais conclusdes é que
cada modelo deve ajustar sua validade para uma faixa etaria pela qual a estrutura transita, alertando
sobre a certeza das previsdes dependendo do estagio de vida util ao qual esta confinada. A revisdo
termina com reflexdes sobre o uso presente e futuro desses modelos conceituais.
Palavras-chave: modelo conceitual; vida util; durabilidade; performance; evolugéo.
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1. INTRODUCTION

Service life models are important because they allow us to understand the behavior of a structure
and at the same time monitor it over time through preventive and/or corrective maintenance.
Various authors, committees and organizations define the types of models that have been used for
several decades, to mention a few: ICA, 2000, 2017; Alconpat, 2020; CEB, 1982, 1983, 1987,
1997; CIB, 1991, 1996, 2004; DURACRETE, 1999, 2000; 1SO, 2000, 2001, 2008, 2012; LIFE-
365, 2005; NMX, 2018, 2020; FIB, 2006, 2010, 2013; etc. Initially, when the designer conceives
the structure, he or she must build on or create a conceptual model. The conceptual model is based
on drawings and strokes that obey what is to be represented. What one wants to represent can be
presented in a qualitative or quantitative way. Hence, conceptual models allow empirical and
analytical models to be represented in an illustrated way.

An empirical model is one that is based on experience and test results, usually from field and
laboratory tests, to which correlation methods are applied, and of which it is not known if they will
be reproducible under circumstances different from those in which they were obtained. On the
other hand, an analytical model is one that represents situations in which so many results have been
obtained that they have been correlated under the action of certain variables, which already become
laws for construction materials or the durability of structures. In the jargon of the construction
industry, empirical models represent engineers and analytical models represent scientists (Rilem
Report 14, 1996). When it is necessary to build a durability model, both options must always be
considered, the empirical and the analytical.

The conceptual model, on the other hand, is not only a representation of what would be expected
in real life, in this case the service life of the structure, but also of the way in which some parameters
can be addressed as a function of time, for example: degradation, performance, corrosion, etc. This
approach can correspond to a deterministic, semi-probabilistic or probabilistic (stochastic) model,
that is, mathematical models.

The difference between a deterministic model and a stochastic model is the way they handle
uncertainty and randomness.

A deterministic model assumes that the outcome is completely predictable, with no uncertainty,
uses equations to predict the outcome, and gives us a single answer. Whereas, a probabilistic model
assumes from the beginning that there is randomness and uncertainty. Therefore, in a conceptual
model, they are shown as probability distributions.

In summary, a conceptual model shows in schematic form what can happen with variables such as
corrosion, degree of deterioration, performance, etc., through empirical (deterministic) and
analytical (stochastic) mathematical models. With them, predictions can be made, whose
verification, over time, allows the conceptual model to be refined.

A conceptual model can evolve depending on a wide variety of factors, and this is what has
happened since Tuutti, 1982, in the case of corrosion, degree of deterioration or performance of a
structure, depending on what you want to represent.

This paper reviews the evolution of conceptual models for service life of reinforced concrete based
on the model of Tuutti, 1982, discussing the contributions of each one with respect to their
predecessors and exposing the trend that they will follow in the coming years.

2. EVOLUTION OF CONCEPTUAL MODELS.

The model of Tuutti, 1982, reproduced in Figure 1, was a watershed that allowed us to see the
deterioration of the infrastructure in terms of durability, and more specifically of corrosion. Tuutti
presented it through his doctoral thesis in 1982. For the first time, two periods were considered:
the initiation period, which includes the time it takes for aggressive agents to reach reinforcement,
and the propagation period, which considers the onset of corrosion, catalyzed by ideal temperature
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and humidity conditions associated with the presence of aggressive agents, such as chlorides or
COa2. This was a conceptual model focused on corrosion deterioration.
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Figure 1. Tuutti's conceptual model (reproduced from Tuutti, 1982).
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Several years passed and the conceptual model of Tuutti, 1982, served as the basis for refining new
inclusions such as the limit state or the performance one, both discussed by Rilem's 130 CSL
Committee in 1994 (Sarja and Vesikari Eds., 1996). Figure 2, reproduced from the 130 CSL
Committee document, replaces the corrosion depth of the Tuutti model with the progress of
corrosion in the Y-axis. This new model considers that the propagation period can be accelerated
as a function of the angle "r" in the propagation stage. In the same way, it adds a limit state that is
reached when there is a maximum loss of section, or loss of section or width of admissible crack.
Beyond the borderline state, this model illustrates a dotted line that implies unknown behavior.
This model was conceived and specified by this committee for cases of generalized carbonation
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Figure 2. RILEM 130 CSL Committee, Boundary State Model (reproduced from Sarja and
Vesikari Eds, 1996).

The same 130 CSL committee, at that time, considered it important that conceptual, or empirical,
models could be sustained through the necessary investigations. This would make it possible to
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incorporate environmental parameters and develop other types of models, especially quantitative
ones. The model in Figure 3 shows this by showing that the X and Y coordinates of the model
follow a probabilistic distribution, i.e., that the model also has probabilistic criteria. This is one of
the main contributions of that report. However, at that time there was not yet the boom of so many
varieties of cement and concrete that could well have, and did, a transcendental importance in their
behavior in the short term. Hence the importance of models continuing to evolve in order to
preserve the latter.

A

. . Distribution of
Serviceability service life
limit

Mean service life

Mean degradation curve

Degradation

Distribution of
degradation
-

Time
Figure 3. RILEM 130 CSL Committee, Degradation or Performance Model (reproduced from
Sarja and Vesikari Eds., 1996).

Although the 130 CSL report was published in 1996, the various co-authors of this report had
previously published explanations of the validity of these two models and others in: Alonso and
Andrade, 1993; Andrade et al, 1989, 1994; Bakker 1994; Fagerlund et al 1994; Kasami et al, 1986;
Parrot 1992; Philajavaara 1984, 1994; Siemes et al 1985; Tuutti 1982; Vesikari 1981, 1988.

One of the conceptual models of that time was that of Sommerville 1986a, 1986b, 1992, 1997,
shown in Figure 4. This was a very interesting evolution of the previous models because it began
to define what, in the previous model in Figure 2, was anticipated with a dotted line. In this model,
the Y-axis is now called "structural performance”, which starts optimally up to point A, which is
called "present performance”, and over time continues to decrease to point B, which is called
"minimum acceptable performance". The difference between A and B is now called the "residual
life." This type of model no longer specifically shows the initiation and propagation stages, but
attempts to translate the previous models into the language of structural engineering. This, to
achieve, perhaps and especially, a better understanding in the civil engineering sector, and
particularly that of structural engineers. The model not only attracted attention, but quickly began
to be complemented. One of these models that complement the structural part is that of Andrade in
1994, which adds point C, with the difference C-B being the "safety factor", as can be seen in
Figure 5.
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Figure 4. Somerville Model, 1986a, 1986b, 1992, 1997 (reproduced from Somerville, 1997).
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Figure 5. Andrade's Model, 1994 (reproduced from Andrade, 1994).

The interpretation that reinforced concrete has several "lives" was gaining strength and Paulo
Helene in 1993, 2003 published his conceptual model that relates the "lives" through which
concrete passes with its manifestations of damage, figure 6. That is, evidence of damage appears
in different "lives”, but it is attributed to different causes. Helene's model considers at least service
life, service life, total service life, residual service life, etc. Until then, there was a need to place in
context, in empirical models, the existence of various types of life and their relationship with
phenomenological manifestations, or physical evidence. Paulo Helene (1993, 1997, 2003) is also
one of the first to consider performance in the Y axis.
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Figure 6. Model by Paulo Helene, 1993, 1997, 2003 (Reproduced and translated from Helene,
1993).

Although there will surely be more previous contributions, it was not until 2002 that Siemes and
de Vries, 2002, published what was arguably one of the first phenomenological models. In practical
terms, the one that refers to the evidence. Siemes and de Vries 2002 again show the periods of
initiation and propagation and refine the Y-axis by calling it "amount of damage". This model
simplifies, in part, what Paulo Helene had shown a few years earlier, 1993, 1997. The main
contribution of Siemes and de Vries, 2002, is in the propagation period where they show what
could well be called "behavioral slopes™ and denote the amount of damage to be taken into account
from the beginning of corrosion to then give rise to cracking, loss of bond, spalling and collapse.
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Figure 7. Siemes-de Vries model, 2002 (reproduced from Siemes-de Vries, 2002).

In this twenty-first century, the different existing models have already evolved, especially when
referring to specific situations. One of them was the case of Melchers, 2006, who has published
several models, 2003a, 2003b, 2004, applied to specific situations of marine corrosion. One of his
models, which draws attention, is the one published in 2006 and which is reproduced in Figure 8.
He considers it as a phenomenological model, based on the corrosion of the reinforcement (in mm).
This model specifies what happens in the initiation stage focused on the diffusion of chlorides and
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hydroxides. Its propagation stage considers evidence such as the reduction of pH and the
occurrence of corrosion in aerobic and anaerobic environments, typical of marine corrosion, but
referring exclusively to bare metal. In his work, Melchers discusses the models of Tuutti 1982;
Weyers et al. 1994; Bentur et al. 1997; Francois and Arliguie 1999; and differs from them in that
some, Weyers/Bentur, apparently confuse the accumulation of corrosion products (usually not
visible) with cracks (visible). For this reason, Melchers 2006, in his model, figure 8, only represents
the behavior of steel

reinforcement

corrosion (mm) | , aerobic-anaerobic
threshold transitio
chloride/hydrixide
__ratio reached

chloride

reach

reinforcement Io |

negligible corrosion
1Cnom \ \ | I
' >
0 |tiC 4 ti tac | thom |to I td ta exposure time
Phase | DI D2 co |Icu1t 2 C3
S
—_—
chloride and hydroxyl ion diffusion |« - . < >
acrobic| corrosion ~ anaerobic corrosion
—
‘ pH reduces |

P in concrete e 'bare metal' >
< gl BN =

Figure 8. Model of Melchers and Li, 2006 (reproduced from Melchers and Li, 2006).

Until that moment, 2006, the different models had focused, at different times, on contributing with
the following:

- Existence of the initiation and propagation period.

- Evolution of corrosion depth to degradation, then to amount of damage and finally to

performance.

- Appearance of limit states and different "lives" of service, useful life, etc.

- Consideration of a statistical behavior in both axes.

- Existence of several "lives" considered within the stages of initiation and propagation of

Tuutti 1982.

- Consider all or part of the above in conceptual models expressly for particular situations
However, in all cases, there was a need to limit the validity of the prediction of each conceptual
model to the age range to which it was reliable. It was in 2007 when Castro and Helene 2007, 2018,
presented a conceptual model that divided service life into 7 stages, starting from the conception
of the structure and ending with its final disposition after its collapse. In each of the stages of the
service life of this model, such as stages 4 to 7, the different types of damage that the initial and
phenomenological models have contemplated occur. In the wording of the characteristics of this
model, it is specified that the same type of damage, say a crack, can have different origins and at
different stages of life of the structure. This model has been in force in Mexico (NMX 530, 2018;
NMX 569, 2020) and Latin America (Alconpat, 2020). One of the aspects that the model of Castro
and Helene 2007, 2018 highlights the most is that the predictions of mathematical models must be
limited to the stage of service life in which they are. Since trying to extrapolate the prediction to
different life stages can significantly affect its validity and certainty. To achieve this, Castro and
Helene describe in detail each stage and what happens in it at all levels, from the administrative
and conceptual to the limits of each stage of life, Figure 9.
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Figure 9. Conceptual model of P. Castro and P. Helene (Reproduced from Castro and Helene,
2007, 2018).

A need of the moment was to clarify what the different "lives" of concrete meant, as well as what
the definitions of durability, commonly published in different media, meant. In this sense,
Mendoza-Rangel and Castro-Borges, 2007, published a critical review in this regard, where they
also classified the different types of conceptual models published up to that time according to their
deterministic, semi-probabilistic or probabilistic character. At that time, key pieces for this review
were the definitions published by DURAR, 1997; CPD, 1998; NMX 403, 1999; REHABILITATE,
2003; LIFECON, 2003; and CIB, 2004. The new definition proposals already indicated that both,
new materials and climate change, would have to be taken into account.

This work sought to guide, critically but implicitly, where the evolution of conceptual models could
be directed. They themselves Mendoza-Rangel and Castro-Borges, 2009 published, but in an
expanded form, the risks faced by the use of these models in the face of the threats of climate
change.

Conceptual models continued to evolve for specific situations, and in some ways including the
contributions of previous models, Figure 10. In Figure 10, the reference year corresponds to the
work being cited, but citations are also included from when each author or authors began the
publication of their models. That is, the evolution is seen chronologically, although in practice
some article was published before or after it occurred.
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Figure 10. Timeline illustrating the contributions of conceptual models in the last 43 years.

In the last decade (2015-2025), models have appeared that build on the previous ones, but focus on
specific needs such as considering rehabilitation and repairs, and the behavior in the propagation
stage of structures that have not yet been repaired, as in the following cases.

Alexander and Beushausen, 2019, published a very complete review in which they discuss the
modifications to the conceptual models to include parts that consider the rehabilitation of the
structures. They also insist that the design of service life, model, and prediction must be clearly
related to each other. In the literature reviewed, Alexander and Beushausen discuss various topics
related to service life, one of the most interesting being where they state that there are models that
are made for exceptional structures, such as the one in Figure 11, which is a probabilistic conceptual
model that they work on based on the contributions of ISO 13823:2008, Siemes and Visser 2000,
and DuraCreteR17, 2000. In I1SO, every conceptual model has been important since the beginning
of this century, 1SO 2000, 2001, 2008, 2012. Considering that this type of conceptual model, with
a probabilistic tinge, must be calibrated vs a completely probabilistic model, based on clear rules
of design for durability, is something that Alexander and Beushausen insist on and that has allowed
conceptual, semi-probabilistic and probabilistic models to advance, as has been discussed in recent
decades in large working groups that have given rise to well-known models such as those of
DuraCrete. 2017; Life 365, 2005; LIFEPRED, Andrade, & Tavares, 2012; fib ModelCode, 2006,
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Figure 11. Alexander and Beushausen Model (Reproduced from Alexander and Beushausen,
2019).

In 2020, Andrade and lzquierdo focus in depth on what happens in the Tuutti propagation stage
and how to represent it in a conceptual model, figure 12. This work has several contributions, being
that of its conceptual model the one that contributes to a better understanding of the behavior of
expansion and cracking over time, specifically by the action of sulfates.

Propagation s

s

Initiation

t ter tu  Time
Starting Cover
expansion cracking

Figure 12. Andrade and Izquierdo's model (Reproduced from Andrade and Izquierdo, 2020).

(expansion)

Deterioration degree

it it AN

Dudi et al, 2023, Figure 13, focus at a theoretical level on what happens in the propagation stage.
Like Andrade and Izquierdo, 2020, they consider cracking and its evolution, but previously include
in the propagation stage the behavior associated with the accumulation of corrosion products and
the clogging of pores that ends up affecting the corrosion rate. Also in 2023, Lai et al proposed a
theoretical model to incorporate the convection-diffusion effect of chlorides, although they do not
analyze it from a conceptual model.

Review of the evolution of conceptual service life models for reinforced concrete. 121

Castro-Borges, P.



122

Revista ALCONPAT, 16 (1), 2026: 11 — 126

10% reduction in bar diameter

corrosion onse ,
density due to

pore clogging

c ! .
kS ; 1 Crack propagation
® i T I

E 1 1 I

' ! Crack}appeafs

- : ‘ i i

i ! Change in

2 ; 1 corrosion

= Active !

= | current

g i

: I

3 a

Chloride ions and CO2 ;

Rust Eaccumulation

1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
L}
]
1
1
1

AN i

»

Pfopagation phase ;

\! T
[nitiation phase ' Time

Figure 13. Dudi et al's model (reproduced from Dudi et al, 2023).

3. FUTURE PROSPECTS

It will be common to see in the near future more models that focus on the propagation stage,
especially because this depends on many factors that are associated with the materials, the climate
and the quality of the structure.
Despite the evolution up to these times, each group, each organization and each author follows its
own convictions, adapted to its needs and projects. The important thing is to take into account what
various concepts and models mean and what they are looking for, while at the same time adapting
to materials, structures and customs from different regions.
It is important to highlight the role that various international organizations have played over the
years in the development of models, not only conceptual, but also deterministic, semi-probabilistic
and probabilistic, whose benefits are widely known (ACI, RILEM, ALCONPAT, CIB, fib, etc.).
Figure 10 shows the line of evolution, which of course can still be perfected because surely other
valuable models are not yet there. In this line of evolution, from this twenty-first century, the
following stands out:

- Prescription vs. Performance.

- Compromise among service life designs, modeling, and prediction.

- Differentiate between conceptual, empirical (deterministic) or analytical (semi-

probabilistic or probabilistic) models.

- Differentiate the stages of service life well.

- What happens in the propagation stage (expansion, cracking, etc.).

- Inclusion of rehabilitation or repair in models.
The advent of new variables such as new construction materials, climate change, new cements,
among others, will pose new challenges in terms of the service life of concrete structures.
Conceptual models will continue to evolve according to these new variables for both the initiation
and propagation periods.

4. CONCLUSIONS

A review was made of the contributions of some of the conceptual models of service life that have
been generated and published from 1982 to 2023, 41 years. The evolution has been very productive
and has clearly taken into account the advances in the construction industry, as well as the research
carried out during this time. The contributions of each one were discussed, linking the new of each
version to the present time. The timeline provided contains the major contributions and the dates
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on which they occurred. It was emphasized that the validity of the models, in general, is a function
of limiting their predictions to temporal stages of "lives" of service. The revised models can easily
be placed in one of the stages of the seven-stage conceptual model. The models have moved, in
these four decades, from the prescriptive to the performance, from the phenomenological to the
temporal, and from the general to the specific, where they will continue.

It was concluded that conceptual models will continue to evolve based on variables that have gained
strength in recent years and that have to do with new materials, new cements and climate change.
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