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ABSTRACT 
This study developed an automated image recognition model for inspecting residential roofs using the 

YOLOv8 architecture to identify three types of damage. The methodology involved images from 167 

buildings captured by drones and annotated in CVAT, which were used to train and test the model. 

YOLOv8 was applied for anomaly detection and classification, achieving 79% precision. The 

limitations were the small dataset and the limited variety of capture angles. The originality of the work 

lies in the innovative use of YOLOv8 for roof inspection. Future research will focus on developing the 

YOLOv9 and YOLOv10 architectures and expanding the dataset and damage classes. 

Keywords: maintenance management; machine learning; You Only Look Once (YOLO); roof 

inspection; rooftop assessment. 
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Modelo basado en YOLOv8 para la detección automática de daños en tejados 

residenciales. 

 
RESUMEN 

Este estudio desarrolló un modelo automatizado de reconocimiento de imágenes para la inspección 

de techos residenciales utilizando la arquitectura YOLOv8, con el objetivo de identificar tres tipos 

de daños. La metodología incluyó imágenes de 167 edificios, capturadas por drones y anotadas en 

CVAT, que se utilizaron para entrenar y probar el modelo. YOLOv8 se aplicó para la detección y 

clasificación de anomalías, logrando un 79% de precisión. Las principales limitaciones fueron el 

pequeño tamaño del conjunto de datos y la limitada variedad de ángulos de captura. La originalidad 

del trabajo radica en el uso innovador de YOLOv8 para la inspección de techos. Investigaciones 

futuras se centrarán en el desarrollo de las arquitecturas YOLOv9 y YOLOv10, además de ampliar 

el conjunto de datos y las clases de daños. 

Palabras clave: gestión de mantenimiento; aprendizaje automático; You Only Look Once 

(YOLO); inspección de techos; evaluación de techos. 

 

Modelo baseado em YOLOv8 para detecção automática de danos em telhados 

residenciais. 
 

RESUMO 
Este estudo desenvolveu um modelo automatizado de reconhecimento de imagens para inspeção 

de telhados residenciais, utilizando a arquitetura YOLOv8, com o objetivo de identificar três tipos 

de danos. A metodologia contou com imagens de 167 edifícios, capturadas por drones e anotadas 

no CVAT, utilizadas para treinar e testar o modelo. A YOLOv8 foi aplicada na detecção e 

classificação de anomalias, alcançando 79% de precisão. As principais limitações foram o tamanho 

reduzido do conjunto de dados e a pouca variedade de ângulos de captura. A originalidade do 

trabalho está no uso inovador da YOLOv8 para a inspeção de telhados. Pesquisas futuras incluirão 

o desenvolvimento das arquiteturas YOLOv9 e YOLOv10, bem como a ampliação do conjunto de 

dados e das classes de problemas. 

Keywords: gestão da manutenção; aprendizado de máquina; You Only Look Once (YOLO); 

inspeção de telhado; avaliação de telhado. 
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1. INTRODUCTION 
 

The building envelope plays a critical role in the overall performance of a structure, acting as a 

protective layer that shields the building from external environmental degradation (Silva et al., 

2015). Roofs and coverings primarily protect buildings, creating indoor environments shielded 

from external agents such as temperature, humidity, rain, wind, and noise (Garcez et al., 2012; 

Conceição et al., 2017). The maintenance of this system is a crucial component in building 

maintenance programs, as the roof system is the most vulnerable part of buildings due to its direct 

exposure to the environment (Rosenberger, 2012). When exposed to severe weather conditions, 

these systems often experience accelerated deterioration, leading to higher energy consumption, 

compromising the structural integrity of the roof and other building components, and reducing the 

building’s lifespan (Alashari et al., 2022). Therefore, regular assessments are essential, as they can 

lead to substantial cost reductions (Liu et al., 2020; Alzarrad et al., 2022). 

Manual inspection is the primary method for periodically assessing the structural and functional 

requirements to ensure compliance with basic performance standards (Dang et al., 2021). 

Traditional inspection methods rely on human labor to identify issues and defects. However, these 

tasks are often tedious and exhausting, resulting in errors due to human factors like inattention, 

optical illusions, subjective assessments, and inspector fatigue (Radopoulou and Brilakis, 2017; 

Hoang et al., 2018). Moreover, human inspectors require training and experience, which is time-

consuming. Employee turnover is another significant drawback of manual labor (Olimov et al., 

2022). Beyond these challenges, two additional factors complicate periodic assessments: the risk 

of falling from the roof and the extra costs arising from a lack of precision and human error (Brown 

et al., 2021). 

Based on these findings, we can classify the limitations of roof inspections into two main areas: 

data acquisition and data analysis. To address the first limitation related to data acquisition, drones, 

also known as Unmanned Aerial Vehicles (UAVs), stand out. Drones are highly flexible, with 

versatile movements, allowing for rapid exploration of built environments and requiring minimal 

labor costs, as they only need battery changes and pre-planned routes that eliminate the need for 

manual operations during flight (Chu et al., 2024). Many studies have utilized this technology for 

roof inspections (Gajjar & Burgett, 2020; Silveira et al., 2020; Staffa et al., 2023; Santos et al., 

2023).  

Regarding data analysis, automated Artificial Intelligence (AI) algorithms have shown promising 

results in overcoming the limitations of subjective assessments by individual inspectors (Alizadeh 

& Ma, 2021; Avola et al., 2022). Notable works in this area include studies by Alzarrad et al. 

(2022), Hou et al. (2023), and Wang et al. (2023). Combining these two strategies can significantly 

enhance inspection results, enabling regular inspections and addressing previously mentioned 

limitations, as evidenced by research from Mostafa et al. (2023), Santos et al. (2023), and Staffa et 

al. (2023).  

However, despite the relevance of these studies, some limitations persist. Mostafa et al. (2023) 

developed a two-stage Convolutional Neural Network (CNN) model for defect detection and 

classification in roofs using 2D images from over 5,500 images of 21 roofs. The model achieved 

95% accuracy in detection and 97% in classification. However, the absence of defects such as 

cracks and blisters in the training images limits its effectiveness, highlighting the need for further 

research and improvements. 

In the study by Santos et al. (2023), the authors optimized the maintenance of flat roofs using 330 

images captured by drones and tested six deep learning algorithms for object detection, including 

Region-based CNN (Faster R-CNN), RetinaNet, and Adaptive Training Sample Selection (ATSS). 

Faster R-CNN achieved the best results with 93% recall and F1-score, while ATSS reached 95% 

accuracy. Error analysis highlighted the complexity of flat roofs, suggesting the need to improve 
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algorithms to handle their variations. Although the study effectively detected condenser units, there 

is a need to expand the focus to other issues, such as extra tiles and oxidation in gutters, which also 

require inspection. 

To address these research gaps, this work proposes an image recognition model for residential 

roofs. A comprehensive dataset of images from 167 residential buildings collected by UAVs was 

used to detect and classify three roof damage types: extra tiles across the roof, oxidation in gutters, 

and open hatch covers. Annotations were made using CVAT, and the study employed the eighth 

generation of the You Only Look Once (YOLO) architecture, YOLOv8. 

 

2. APPLICATIONS OF YOLO IN CONSTRUCTION 
 

In computer vision, the challenging task of object detection has undergone significant evolution, 

driven by the revolutionary introduction of the YOLO architecture in 2016 (Redmon et al., 2016). 

YOLO's innovative approach differed from traditional two-stage object detection architectures by 

proposing a unified architecture capable of simultaneously predicting bounding boxes and class 

probabilities, meeting real-time processing demands (Koubaa et al., 2021). YOLOv8 is one of the 

latest versions in the YOLO series, utilizing a network architecture that incorporates a Feature 

Pyramid Network (FPN) and layer connections to integrate feature information across multiple 

scales efficiently. This version combines attention mechanisms and optimization strategies to 

enhance accuracy and performance in object detection. The core structure includes a backbone 

network for feature extraction from images, typically using deep CNN such as Darknet or ResNet, 

and a detection head composed of convolutional and fully connected layers responsible for 

predicting the bounding box and class probability of objects (Cao et al., 2024). 

In this context, significant studies in construction have explored the advanced capabilities of 

YOLOv8. Sohaib et al. (2024) developed a model to detect and segment cracks in concrete, while 

Han et al. (2024) automated the detection and classification of small tools on construction sites. 

Zhao et al. (2024) created a system for automated monitoring of defects in 3D-printed concrete. 

Jiang et al. (2024) proposed a method to optimize concrete vibration timing with robots, using 

YOLOv8 to identify the best vibration positions and remove visual interference from reinforcement 

bars. Ribeiro et al. (2024) proposed a YOLOv8-based method for detecting building fissures. The 

images used for training were collected from the internet, and the model achieved 80% accuracy 

in validation with images not included in the training. However, the model focused solely on 

fissures, limiting its applicability to other use cases. 

In a more specific context, for evaluating roofs and building coverings, Hou et al. (2023) developed 

an enhanced detection algorithm based on YOLOv3 to identify decorative elements known as 

"ridge beasts" on roofs of ancient Chinese buildings. This technology is crucial for the 3D 

reconstruction of historic buildings, historical dating, and cultural and tourist services. They 

improved the YOLOv3 network by incorporating local features and deep separable convolutions 

to expand the receptive field and capture more diverse characteristics. Additionally, they optimized 

the residual structure of the feature extraction network and redesigned the model’s prediction head 

by introducing extrusion and excitation modules and using convolutions of various sizes. 

Experiments showed that the enhanced algorithm achieved a mean Average Precision (mAP) of 

86.48%, 3.05% higher than the original YOLOv3, while reducing model parameters by 70% and 

improving detection performance. Although this research focused on detecting decorative 

elements, the model could also be applied to identify common issues in old buildings, such as 

broken or missing tiles, as well as moss and oxidation on roofing elements, which are essential for 

the proper maintenance of these historic structures. 
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In addition to this study, Alzarrad et al. (2022) developed a method using deep learning for the 

automated evaluation of residential roofs, focusing on identifying damaged areas, such as missing 

tiles. They employed transfer learning methodology using YOLOv5 to process images and identify 

these damages. The study found that despite the limited data, the model achieved approximately 

81% precision and 86% accuracy. However, while the study showed good results in detecting 

issues with residential roof coverings, it focused only on one type of problem. In practice, many 

other issues with residential roofs need to be identified during inspections for proper resolution, 

such as oxidation on gutters and flashings. Neglecting these issues can lead to structural 

deterioration, significantly increasing repair costs. 

Qiu et al. (2024) proposed a two-stage method based on YOLOv8. In the first stage, the YOLOv8 

model is used to identify historically significant buildings in the area, achieving an mAP rate of 

97.2%. The same model is employed in the second stage to segment the selected images, detecting 

potential roof defects, such as collapses, missing tiles, inappropriate architectural additions, and 

vegetation encroachment. Although this research represents a significant advancement and utilizes 

one of the latest versions of YOLO, it still focuses on the roofs of culturally historic buildings, such 

as Buddhist temples, which generally have specific roofing systems different from those used in 

modern residential buildings. 

Given this, it is clear that immediate detection and classification of defects and problems in 

residential building roofs are crucial. While the studies mentioned have significantly advanced the 

automation of detecting certain roof issues, further research is still needed to address other types 

of problems. Considering the advancements in YOLO architectures, there is a clear opportunity to 

apply these networks in this context. In this study, we evaluate the use of YOLOv8 to detect and 

classify three issues in residential building roofs. As we found no prior studies in the literature 

addressing this topic, we highlight the application of one of the latest YOLO versions to automate 

the inspection process. Furthermore, we provide the codes used in this research to allow other 

researchers to enhance the model and add more problem classes, as different types of defects also 

need to be identified and addressed with equal importance. 

 

3. RESEARCH METHOD 
 

This study adopted an experimental simulation research strategy, developed in four stages (Figure 

1): (1) refining the database of residential roof images with surface damage; (2) creating the 

automated damage recognition model using the YOLOv8 architecture; (3) training the model using 

70% of the database; and (4) testing and validating the trained model with new images (30%). 

Precision, Recall, and mAP indicators evaluated the model's performance. 
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Figure 1. Research design. 

 

In this work, we utilized YOLOv8. According to Lalinia and Sahafi (2024), one of the main 

advantages of incorporating YOLOv8 into computer vision projects is its greater accuracy 

compared to previous YOLO models. YOLOv8 supports multiple tasks, such as object detection, 

segmentation, and image classification, enhancing its versatility for various applications. The 

YOLOv8 architecture is shown in Figure 2; further details about the architecture can be found in 

Terven et al. (2023). 

 

 
Figure 2. YOLOv8 architecture used. 

 

Figure 2 shows that the architecture is organized into three main components: Backbone, Neck, 

and Head, each playing a specific role in image processing and prediction generation.  
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The input image is the starting point of the process, where the network begins to extract relevant 

features to identify potential defects. The Backbone extracts basic features from the image through 

several convolutional layers that detect initial patterns, such as edges and textures. As the image 

progresses through these layers, more complex modules, known as Modules.C2f, refine the 

extracted features, allowing for a more detailed image analysis. The Backbone also includes the 

Spatial Pyramid Pooling Fast (SPPF) module, aggregating information at different scales and 

enhancing detection robustness. 

The Neck is an intermediary between the Backbone and the Head, refining and combining the 

extracted features through Concatenation (Concat), Upsampling, and additional convolutional 

layers. The Neck's goal is to prepare these features for more precise multi-scale detection, ensuring 

that both fine details and larger structures in the image are considered in the final prediction. 

Finally, the Head is responsible for generating the final predictions. The features refined by the 

Neck are used to identify and classify objects or defects in the image. The Head consists of two 

main types: the Segment Head, which handles segmentation tasks by identifying exact areas where 

defects are present, and the Detection Head, which focuses on object detection and classification 

by generating bounding boxes and object classes. Additionally, losses (Cis Loss and Bbox Loss) 

associated with these predictions are calculated to optimize the model's performance. 

This architecture allows YOLOv8 to process images efficiently, from initial feature extraction to 

final prediction generation, ensuring accurate detection of defects in residential roofs. 

 

3.1 Database  

GETEC-UFBA ("Grupo de Pesquisa e Extensão em Gestão e Tecnologia das Construções da 

Escola Politécnica da Universidade Federal da Bahia", in Portuguese) provided the dataset used in 

this research. These images were collected from residential buildings aged between one and five 

years. Over 167 residential roofs were inspected from manual drone flights, with an approximate 

altitude of 5 meters above the building being analyzed. The data acquisition followed inspection 

protocols proposed by Silveira et al. (2021). After analyzing the images in this dataset, 394 images 

were selected, distributed among 425 annotations for the class "Presence of extra tile in the 

transverse direction of the roof", 473 annotations for the class "Gutter integrity (oxidation)", and 

29 annotations for the class "Open trapdoor". The dataset was split into approximately 70% for 

training, 20% for validation, and 10% for testing. After data augmentation in the training set, 498 

images were obtained from the training set, with examples of these classes shown in Figure 3. 

 

 
Figure 3. Examples of roof damage addressed in this research: a) Presence of extra tile in the 

transverse direction of the roof; b) Gutter integrity (oxidation); c) Open trapdoor. 

 

3.2 Creating the YOLOv8 model 

After defining the anomalies, the training images were labeled using Roboflow. An example of this 

labeling is shown in Figure 4a, where some extra tiles on the roof, oxidation, and an open skylight 

are labeled. Figure 4b illustrates the complete workflow from data entry to model training and 
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subsequent inference process, where annotations are made; then preprocessing, data augmentation, 

and finally, the data is exported in YOLOv8 format for analysis in Google Colab. 

 

 
Figure 4. a) Damage notes; b) Workflow. 

 

3.3 Model training, testing and validation 

Precision, Recall, and mAP are the evaluation methods used to assess the models created on the 

Custom Vision and Roboflow platforms. Precision represents the number of correct cases out of 

all available cases. High precision indicates that anomalies are being identified accurately. Recall, 

consequently, is the number of correct instances out of all positive cases. A model with high recall 

effectively identifies the greatest number of correct anomalies. Similarly, mAP is the mean of the 

average precision, which is the precision obtained at various levels of recall across all classes 

(anomalies). The following formulas represent the Key Performance Indicators (KPIs): 

 

(1) 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2) 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3) 

 

𝒎𝑨𝑷 =
𝟏

𝒏
∑ 𝑨𝑷𝒌

𝒏

𝒌=𝟏

 

 

 

 

Where TP (True Positives) are hits in positive instances, FN (False Negatives) are errors in positive 

instances, TN (True Negatives) are hits in negative instances, and FP (False Positives) are errors 

in negative instances and APk is the Average Precision for each class k. These metrics provide 

insights into the model's classification and quality. 
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4. RESULTS AND DISCUSSION 
 

During the model training, the YOLOv8 architecture performs feature activations at different 

neural network stages. These activations demonstrate how the network processes visual 

information to detect patterns and important features in the input images (Figure 5). These 

visualizations illustrate how YOLOv8 performs object detection, from basic feature extraction to 

combining information across different scales and resolutions, enabling precise identification of 

roof defects. 

 

 
Figure 5: Structure of the trained YOLOv8 layers. 

 

The "Conv_features" are the outputs of the convolutional layers, responsible for identifying local 

patterns such as edges and textures. As we progress through the different stages, from 

"stage0_Conv_features" to "stage20_Concat_features," the activations reflect increasingly 

complex and abstract representations of the image features. The "Upsample_features" are related 

to the upsampling process, where the spatial resolution of the activations is increased, allowing the 

network to detect objects at different scales. This process is crucial for detecting smaller details on 

roofs. 

The "C2f_features" refer to combinations of convolutions followed by activation functions 

designed to capture more complex interactions between features extracted in previous layers, 

enhancing the network's ability to identify patterns. Finally, the "Concat_features" result from 

concatenation operations, which combine activations from different layers or stages of the network. 

This technique allows the network to integrate information from other levels of abstraction, 

merging features extracted at various stages to produce the final prediction. 

The YOLOv8 model was trained using Google Colab. The model training and Streamlit application 

development code is available at: (OMITTED FOR REVIEW). The trained model has 168 layers 

and approximately 3 million parameters. The input images for the model were 640 × 640 pixels. 

The performance metrics of YOLOv8 on the test set are presented in Table 3, where mAP50 

represents the mAP calculated with an Intersection over Union (IoU) threshold of 0.50. 
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Table 2. Evaluation metrics of the YOLOv8 model for the test set. 

Class  Images Precision (%) Recall (%) mAP50 (%) 

All 73 0.79 0.59 0.66 

dirtyGutter 73 0.69 0.44 0.51 

extraTile 73 0.78 0.66 0.68 

openTrapdoor 73 0.90 0.67 0.78 

 

For extra tiles across the roof, the model achieved a Precision of 78%, Recall of 66%, and mAP50 

of 68%. The model effectively identifies extra tiles, although it is slightly less accurate than 

detecting open skylights. Finally, for the integrity of the gutters, the model performed the worst, 

with a Precision of 69%, Recall of 44%, and mAP50 of 51%, indicating greater difficulty in 

detecting and accurately classifying this issue. Figure 6 shows the training and validation loss 

graphs, along with the Precision and Recall metrics; these indicate that the model is learning 

robustly and steadily (with decreasing losses and increasing metrics). 

 

 
Figure 6. Training and validation losses, Precision and Recall metrics of YOLOv8. 

 

Figures 7 and 8 display the classification results from the test set. From these images, it is clear 

that the model can identify extra tiles arranged in different orientations (Figure 7a shows extra tiles; 

Figure 7b shows an extra tile and oxidation on the gutter) and open skylights in various positions 

(Figures 8a and 8b show an open skylight and some extra tiles). These classifications are vital for 

preventive maintenance, ensuring the roofs’ structural integrity and proper functionality. Despite 

the model's successes, some elements were not identified in Figures 7 and 8. 
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Figure 7: Test set classification for extra tiles and oxidation. 

 

 
Figure 8: Test set classification for open trapdoor and extra tile. 

 

The literature review on the detection and classification of defects in pitched roofs of residential 

buildings highlighted the need for studies focusing on the use of YOLOv8 algorithms, given the 

promising results of earlier versions for similar purposes (Alzarrad et al., 2022; Hou et al., 2023; 

Wang et al., 2023; Fan, 2024). This study addressed this gap by developing an automated 

recognition model for three defects in residential roofs using images collected by drones from 167 

roofs. The model enabled the identification of extra tiles, oxidation in gutters, and open skylights, 

which are crucial for maintaining roof integrity. The results achieved 90% accuracy in detecting 

these defects. 

This study's results were positive compared to similar studies (Alzarrad et al., 2022; Hou et al., 

2023; Qiu et al., 2024). Additionally, while this research focuses on defects in residential roofs, 

previous studies concentrated on detecting decorative elements on historical building roofs. 

Nevertheless, all studies underscore the importance of early problem identification and the need 

for routine inspections to ensure the physical integrity of buildings. Furthermore, other studies, 

such as those by Santos et al. (2023), use YOLO for detecting air conditioning condensers, noting 
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that these elements are more distinct on roofs, making them easier to visualize than detecting 

oxidized gutters. The results from this study showed that the model recognized this damage with 

up to 78% precision during testing. 

Moreover, comparing this study with other literature that did not use YOLO architectures reveals 

some common points. Firstly, the results of this study align with the findings of Staffa et al. (2023) 

regarding the need for inspections on residential roofs, considering the maintainability of these 

structures. Another important point is that although Staffa et al. (2023) addressed a larger number 

of classes to be detected on roofs, they used algorithms from an Application Programming Interface 

(API) that do not allow for hyperparameter adjustments, complicating model improvements. 

 

5. CONCLUSION 
 

This study proposed an image recognition model for residential roofs using the eighth generation 

of the YOLO architecture, YOLOv8. A rich dataset consisting of images from 167 buildings 

collected by Unmanned Aerial Systems (UAS) was used to evaluate the actual conditions of 

residential building roofs comprehensively. These images were annotated in CVAT to detect and 

classify three types of roof damage: extra tiles in the transversal direction, oxidation in gutters, and 

open skylights. The model was built using 394 images, with 70% used for training, 20% for 

validation, and 10% for testing. Despite the limited number of images used for training, the results 

were promising. 

The YOLOv8 architecture demonstrates significant advantages over its previous versions. 

YOLOv8 allows for rapid detection and classification, offering easy implementation and efficiency 

in image analysis. Additionally, YOLOv8 can be scaled for real-time classification. One limitation 

in this study was the small dataset of only 167 buildings, which may have impacted the model's 

final performance. Moreover, image capture through drones may limit the variety of capture angles. 

Future work could consider a more diverse data collection approach. 

Future studies will focus on developing YOLOv9 and YOLOv10 architectures for roof inspection. 

Additionally, object recognition models specific to roofing will be developed to enhance 

maintenance management. These models will integrate the generated data into the maintenance 

management system and evaluate potential improvements. Opportunities will also be explored to 

incorporate other technologies into the process, optimize automation, and include a wider variety 

of roof types and materials. To strengthen the model, the authors will add more images and expand 

the set of problem classes in residential roofs, aiming to increase robustness and accuracy in the 

analysis. 
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