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ABSTRACT 
This paper shows a new model for complete design of rectangular isolated footings under uniaxial and 

biaxial bending, considering that the footing area in contact with the soil partially works to 

compression. The methodology is presented by integration to obtain moments, flexural shearing and 

punching shearing. Numerical examples are presented for design of rectangular isolated footings under 

uniaxial and biaxial flexion and are compared with the current model (total area works in compression) 

in terms of concrete and steel volumes. The current model shows greater volumes of concrete and steel. 

Therefore, the new model is the most appropriate, since it presents better quality control in the 

resources used. 

Keywords: rectangular isolated footings; new model for complete design; moments; flexural shearing; 

punching shearing. 
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Nuevo modelo para el diseño completo de zapatas aisladas rectangulares 

tomando en cuenta que la superficie de contacto funciona parcialmente en 

compresión 
 

RESUMEN 
Este documento muestra un nuevo modelo para diseño completo de zapatas aisladas rectangulares 

bajo flexión uniaxial y biaxial, tomando en cuenta que el área de la zapata en contacto con el suelo 

funciona parcialmente a compresión. La metodología se presenta por integración para obtener 

momentos, cortantes por flexión y penetración. Los ejemplos numéricos se presentan para el 

diseño de zapatas aisladas rectangulares bajo flexión uniaxial y biaxial, y se comparan con el 

modelo actual (área total funciona en compresión) en términos de volúmenes de concreto y acero. 

El modelo actual muestra mayores volúmenes de concreto y acero. Por lo tanto, el nuevo modelo 

es el más adecuado, ya que presenta mejor control de calidad en los recursos utilizados. 

Palabras clave: zapatas aisladas rectangulares; nuevo modelo para diseño completo; momentos; 

cortante por flexión; cortante por penetración. 
 

Um novo modelo para o dimensionamento completo de fundações isoladas 

retangulares levando em consideração que a superfície de contato funciona 

parcialmente em compressão 

 
RESUMO 

Este artigo mostra um novo modelo para o dimensionamento completo de fundações isoladas 

retangulares sob flexão uniaxial e biaxial, levando em consideração que a área da sapata em 

contato com o solo funciona parcialmente à compressão. A metodologia é apresentada por 

integração para obter momentos, cisalhamento por flexão e punção. Exemplos numéricos são 

apresentados para o projeto de fundações isoladas retangulares sob flexão uniaxial e biaxial e são 

comparados ao modelo atual (a área total funciona em compressão) em termos de volumes de 

concreto e aço. O modelo atual mostra maiores volumes de concreto e aço. Portanto, o novo 

modelo é o mais apropriado, pois apresenta melhor controle de qualidade nos recursos utilizados.  

Palavras-chave: fundações isoladas retangulares; novo modelo para dimensionamento completo; 

momentos; cisalhamento de flexão; punção.  
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1. INTRODUCTION 

 
The design of shallow footings supported on the ground depends of the loads and moments 

provided by the columns. 

Figure 1 shows the distribution of soil pressure under the rigid footing that depends on the type of 

soil, and the position of the applied resultant force at the center of gravity of the base. Figure 1(a) 

presents a footing resting on sandy soil. Figure 1(b) shows a footing resting on clay soil. Figure 

1(c) presents the uniform soil pressure distribution used in the current design. 

The bearing capacity has been investigated for shallow footings subjected to biaxial bending, which 

takes into account a linear ground pressure distribution and this contact area works partly in 

compression (Irles-Más and Irles-Más, 1992; Özmen, 2011; Rodriguez-Gutierrez and Aristizabal-

Ochoa, 2013a, b; Lee et al., 2015; Kaur and Kumar, 2016; Bezmalinovic Colleoni, 2016; 

Dagdeviren, 2016; Aydogdu, 2016; Girgin, 2017; Turedi et al., 2019; Al-Gahtani and Adekunle, 

2019; Galvis and Smith-Pardo, 2020; Rawat et al., 2020; Lezgy-Nazargah et al., 2022; Gör, 2022). 

 

   

(a) (b) (c) 

Figure 1. Pressure distribution under the footing 

Source: Own elaboration 

 

The mathematical models for the foundations design: for isolated footings have been developed for 

square, circular and rectangular shapes (Algin, 2000, 2007; Luévanos-Rojas, 2012a, b, 2013, 

2014a, 2015a; Luévanos-Rojas et al., 2013, 2014b, 2016b, et al., 2017; Filho et al., 2017; López-

Chavarría et al., 2017a, c, 2019; Khajehzadeh et al., 2014); For rectangular, trapezoidal, corner, T-

shaped and strap combined footings (Jahanandish et al., 2012; Luévanos-Rojas, 2014c, 2015b, c, 

d, 2016ª, b, et al., 2018a, b, 2020; López-Chavarría et al., 2017b; Velázquez-Santillán et al., 2019; 

Aguilera-Mancilla et al., 2019; Yáñez-Palafox et al., 2019). These papers take into account the 

entire contact area working under compression. 

The models closest to this document are: Soto-García et al. (2022) proposed a mathematical model 

to obtain the minimum area for circular isolated footings, taking into account that footing area in 

contact with the soil works partially to compression, this model presents a case because the analysis 

is developed for the resultant moment. Vela-Moreno et al. (2022) developed a mathematical model 

to find the minimum surface for rectangular isolated footings, taking into account that footing area 

in contact with the soil works partially to compression, this model shows five cases for biaxial 

bending, two cases for uniaxial bending (Load is on the X axis) and another two cases for uniaxial 

bending (Load is on the Y axis). Kim-Sánchez et al. (2022) presented a mathematical model to 

obtain the thickness and the areas of transverse and longitudinal steel for circular isolated footings, 

taking into account that footing area in contact with the soil works partially to compression. 

This investigation presents a new analytical model to obtain a complete design (thickness and areas 

of transverse and longitudinal steel) for rectangular isolated footings, taking into account that 

footing area in contact with the soil works partially to compression, this model is based on the area 

of contact with the soil (sides of footing) of the model proposed by Vela-Moreno et al. (2022). The 

formulation of the new model is developed by integration to find the moments, the flexural shearing 
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and the punching shearing under the code criteria (ACI 318S-19). Other authors present the 

equations to find the complete design of a rectangular isolated footing, but considering the total 

surface working under compression. Numerical examples are shown to find the complete design 

of rectangular isolated footings under axial load and moments in one and two directions and the 

results are compared with those of other authors to observe the differences. The ground contact 

areas presented in this document are based on the work proposed by Vela-Moreno et al. (2022). 

This model will have its impact on the construction industry with lower costs (materials and labor).  

 

2. FORMULATION OF THE NEW MODEL 
 

A rigid rectangular isolated footing is deformed in a planar shape, i.e., the distribution of soil 

pressure under the footing is considered linear. 

The general equation for any footings subjected to biaxial bending under a factorized axial load 

and two factorized orthogonal moments is: 

 

𝜎𝑢(𝑥, 𝑦) =
𝑃𝑢
ℎ𝑥ℎ𝑦

+
12𝑀𝑢𝑥𝑦

ℎ𝑥ℎ𝑦
3 +

12𝑀𝑢𝑦𝑥

ℎ𝑥
3ℎ𝑦

 (1) 

 

where: σu is the factorized pressure generated by the soil due to the factorized axial load and the 

factorized moments that are applied at the footing, Pu is the factorized axial load, Mux is the 

factorized moment on the X axis, Muy is the factorized moment on the Y axis, hx and hy are the 

sides of the footing, x and y are the coordinates where the pressure generated by the soil is located. 

The biaxial bending equation can be applied when the resultant force Pu is located inside the central 

nucleus (area working fully in compression), and when the resultant force Pu is outside of the 

central nucleus (area working partially in compression) is not valid. 

When the resultant force Pu is outside of the central nucleus, the general equations of soil pressure 

under the footing subjected to uniaxial and biaxial bending are: 

Uniaxial bending (Pu is located on the Y axis): 

 

𝜎𝑧(𝑥, 𝑦) =
𝜎𝑢𝑚𝑎𝑥(2ℎ𝑦1 − ℎ𝑦 + 2𝑦)

2ℎ𝑦1
 (2) 

 

Uniaxial bending (Pu is located on the X axis): 

 

𝜎𝑧(𝑥, 𝑦) =
𝜎𝑢𝑚𝑎𝑥(2ℎ𝑥1 − ℎ𝑥 + 2𝑥)

2ℎ𝑥1
 (3) 

 

Biaxial bending: 

 

𝜎𝑧(𝑥, 𝑦) =
𝜎𝑢𝑚𝑎𝑥[ℎ𝑦1(2𝑥 − ℎ𝑥) + ℎ𝑥1(2𝑦 − ℎ𝑦) + 2ℎ𝑥1ℎ𝑦1]

2ℎ𝑥1ℎ𝑦1
 (4) 

 

where: σumax is the factorized maximum pressure generated by the soil due to the factorized axial 

load and the factorized moments that are applied at the footing. 

The critical sections for moments are located on the a-a and b-b axes, for the critical sections for 

the flexural shearing are located on the c-c and e-e axes, and the critical section for the punching 

shearing occurs in the perimeter formed by points 5, 6, 7 and 8 (ACI 318S-19).  
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2.1. Rectangular isolated footing subjected to uniaxial bending 

Figure 2 shows the four possible cases to obtain the minimum area of a rectangular isolated footing 

subjected to uniaxial bending. Two cases when P is located on the Y axis: 1) when P is located 

inside the central nucleus; 2) when P is located outside the central nucleus. Two cases when P is 

located on the X axis: 1) when P is located inside the central nucleus; 2) when P is located outside 

the central nucleus. 

 

  
Case I-Y Case I-X 

  
Case II-Y Case II-X 

Figure 2. Four possible cases of minimum area for uniaxial bending 

Source: Own elaboration based on Vela-Moreno et al. (2022) 

 

Figure 3 shows the critical sections for moments and flexural shearing of four possible cases: Case 

I-Y when P is located on the Y axis, and inside the central nucleus. Case II-Y when P is located on 

the Y axis, and outside the central nucleus: Case II-YA when the neutral axis is located hy/2 – hy1 

≥ c1/2 (moment) and hy/2 – hy1 ≥ c1/2 + d (flexural shearing); Case II-YB when the neutral axis is 

located hy/2 – hy1 ≤ c1/2 (moment) and hy/2 – hy1 ≤ c1/2 + d (flexural shearing). Case I-X when P is 

located on the X axis, and inside the central nucleus. Case II-X when P is located on the X axis, 

and outside the central nucleus: Case II-XA when the neutral axis is located hx/2 – hx1 ≥ c2/2 

(moment) and hx/2 – hx1 ≥ c2/2 + d (flexural shearing); Case II-XB when the neutral axis is located 

hx/2 – hx1 ≤ c2/2 (moment) and hx/2 – hx1 ≤ c2/2 + d (flexural shearing). 

 

2.1.1. Flexural shearing and moments 

The general equations in the “c” and “e” axes for the factored flexural shearing “Vuc” and “Vue”, 

and in the “a” and “b” axes for the factored moments “Mua” and “Mub” are: 

 

Case I-Y  

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2
+𝑑

 (5) 
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𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑢(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2
+𝑑

 (6) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑢(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2

 (7) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑢(𝑥, 𝑦) (𝑥 −
𝑐2
2
)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2

 (8) 

 

where: d is the effective depth of the footing, c1 and c2 are the sides of the column. 

Note: Equation (1) is substituted into equations (5) to (8) and Muy = 0 and the integrals are 

developed to obtain the final equations. 

 

  
  

Case I-Y Case I-X 

    

Case II-YA Case II-XA 

    

Case II-YB Case II-XB 
Moments Flexural shearing Moments Flexural shearing 

Figure 3. Moments and flexural shearing for uniaxial bending 

Source: Own elaboration 
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Case II-YA  

For hy/2 – hy1 ≥ c1/2 + d (flexural shearing) and hy/2 – hy1 ≥ c1/2 (moment) are: 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

 (9) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2
+𝑑

 (10) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

 (11) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2

 (12) 

 

Case II-YB  

For hy/2 – hy1 ≤ c1/2 + d (flexural shearing) and hy/2 – hy1 ≤ c1/2 (moment) are: 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2
+𝑑

 (13) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2
+𝑑

 (14) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2

 (15) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2

 (16) 

Note: Equation (2) is substituted into equations (9) to (16) and the integrals are developed to obtain 

the final equations. 

 

Case I-X  

The general equations in the “c” and “e” axes for the factored flexural shearing “Vuc” and “Vue”, 

and in the “a” and “b” axes for the factored moments “Mua” and “Mub” are equations (5) to (8). But 

in these equations Mux = 0 is substituted and the integrals are developed to obtain the final 

equations. 
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Case II-XA  

For hx/2 – hx1 ≥ c2/2 + d (flexural shearing) and hx/2 – hx1 ≥ c2/2 (moment) are: 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2
+𝑑

 (17) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥1

 (18) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2

 (19) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥1

 (20) 

 

Case II-XB  

For hx/2 – hx1 ≤ c2/2 + d (flexural shearing) and hx/2 – hx1 ≤ c2/2 (moment) are: 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2
+𝑑

 (21) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2
+𝑑

 (22) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2

 (23) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2

 (24) 

 

Note: Equation (3) is substituted into equations (17) to (24) and the integrals are developed to 

obtain the final equations. 

 

2.1.2. Punching shearing 

Figure 4 shows the critical sections for punching shearing of four possible cases: Case I-Y when P 

is located on the Y axis and inside the central nucleus. Case II-Y when P is located on the Y axis 

and outside the central nucleus: Case II-YA when the neutral axis is localized hy/2 – hy1 ≥ c1/2 + 

d/2, Case II-YB when the neutral axis is localized hy/2 – hy1 ≤ c1/2 + d/2. Case I-X when P is 

located on the X axis and inside the central nucleus. Case II-X when P is located on the X axis and 

outside the central nucleus: Case II-XA when the neutral axis is localized hx/2 – hx1 ≥ c2/2 + d/2, 

Case II-XB when the neutral axis is localized hx/2 – hx1 ≤ c2/2 + d/2. 
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The general equation for the factorized punching shearing “Vup” is: 

 

Case I-Y  

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑐2
2
+
𝑑

2

−
𝑐2
2
−
𝑑

2

𝑐1
2
+
𝑑

2

−
𝑐1
2
−
𝑑

2

 (25) 

 

Note: Equation (1) is substituted into equation (25) and Muy = 0 and the integral is developed to 

obtain the final equation. 

 

Case II-YA  

For hy/2 – hy1 ≥ c1/2 + d/2 is: 

 

𝑉𝑢𝑝 = 𝑃𝑢 (26) 

 

Case II-YB  

For hy/2 – hy1 ≤ c1/2 + d/2 is: 

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑐2
2
+
𝑑

2

−
𝑐2
2
−
𝑑

2

𝑐1
2
+
𝑑

2

𝑦𝑠

 (27) 

 

where: − c1/2 − d/2 ≤ ys ≤ c1/2 + d/2 

Note: Equation (2) is substituted into equation (27) and the integral is developed to obtain the final 

equation. 

 

Case I-X 

Equation (1) is substituted into equation (25) and Mux = 0 and the integral is developed to obtain 

the final equation. 
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Case I-Y Case II-YA Case II-YB 

   
Case I-X Case II-XA Case II-XB 

Figure 4. Punching shearing for uniaxial bending 

Source: Own elaboration 

 

Case II-XA 

For hx/2 – hx1 ≥ c2/2 + d/2 is equation (26). 

 

Case II-XB 

For hx/2 – hx1 ≤ c2/2 + d/2 is: 

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑐1
2
+
𝑑

2

−
𝑐1
2
−
𝑑

2

𝑐2
2
+
𝑑

2

𝑥𝑠

 (28) 

 

where: − c2/2 − d/2 ≤ xs ≤ c2/2 + d/2. 

Note: Equation (3) is substituted into equation (28) and the integral is developed to obtain the final 

equation. 

 

2.2. Rectangular isolated footing subjected to biaxial bending  

Figure 5 shows the five possible cases to obtain the minimum area of a rectangular isolated footing 

subjected to biaxial bending. 

For case I, it is considered that the total surface of the footing works under compression. The 

pressure generated by the soil on the footing is obtained by equation (1) (biaxial bending). 

For cases II, III, IV and V consider that the total surface of the footing works partially under 

compression, i.e., part of the surface has zero pressure. The pressure generated by the soil on the 

footing is obtained by equation (4). 

 



 

                                                                              Revista ALCONPAT, 13 (2), 2023: 192 – 219 

                                                 New model for complete design of rectangular isolated footings taking 

into account that the contact surface works partially in compression  
Luévanos Rojas, A. 

202 

  
Case I Case II 

  
Case III Case IV 

 
Case V 

Figure 5. Five possible cases of minimum area for biaxial bending 

Source: Own elaboration based on Vela-Moreno et al. (2022) 

 

2.2.1. Flexural shearing and moments 

Figure 6 shows the critical sections for flexural shearing and moments for all possible cases. 

The general equations on the “c” and “e” axes for the factorized flexural shearing “Vuc” and “Vue”, 

on the “a” and “b” axes for the factorized moments “Mua” and “Mub” are: 
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Case I Case II 

  
  

Case IIIA Case IIIB 

    
Case IVA Case IVB 

    
Case VA Case VB 

    
Case VC Case VD 

Moments Flexural shearing Moments Flexural shearing 

Figure 6. Moments and flexural shearing for biaxial bending 

Source: Own elaboration 
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Case I 

When P is located inside the central nucleus  

Equation (1) is substituted into Equations (5) to (8) and the integrals are developed to obtain the 

final equations. 

 

Case II 

When P is located outside the central nucleus 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2
+𝑑

 (29) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2
+𝑑

 (30) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2

 (31) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2

 (32) 

 

Case III 

When P is located outside the central nucleus of two possible cases: Case IIIA when the neutral 

axis is located hy/2 – hy2 ≤ c1/2 (moment) and hy/2 – hy2 ≤ c1/2 + d (flexural shearing); Case IIIB 

when the neutral axis is located hy/2 – hy2 ≥ c1/2 (moment) and hy/2 – hy2 ≥ c1/2 + d (flexural 

shearing). 

 

Case IIIA 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2
+𝑑

 (33) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2
+𝑑

 (34) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2

 (35) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2

 (36) 
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Case IIIB 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2
−ℎ𝑦2

𝑐1
2
+𝑑

+∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦2

 (37) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2
+𝑑

 (38) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2
−ℎ𝑦2

𝑐1
2

+∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦2

 

(39) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2

𝑐2
2

 (40) 

 

where: hy2 = hy1(hx1 – hx)/hx1. 

 

Case IV 

When P is located outside the central nucleus of two possible cases: Case IVA when the neutral 

axis is located hx/2 – hx2 ≤ c2/2 (moment) and hx/2 – hx2 ≤ c2/2 + d (flexural shearing); Case IIIB 

when the neutral axis is located hx/2 – hx2 ≥ c2/2 (moment) and hx/2 – hx2 ≥ c2/2 + d (flexural 

shearing). 

 

Case IVA 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2
+𝑑

 (41) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2
+𝑑

 (42) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2

 (43) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2

 (44) 
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Case IVB 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2
+𝑑

 (45) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2
−ℎ𝑥2

𝑐2
2
+𝑑

+∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥2

 (46) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2

𝑐1
2

 (47) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2
−ℎ𝑥2

𝑐2
2

+∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥2

 

(48) 

 

where: hx2 = hx1(hy1 – hy)/hy1. 

 

Case V 

When P is located outside the central nucleus of four possible cases: Case VA when the neutral 

axis is localized hy/2 – hy2 ≤ c1/2 + d and hx/2 – hx2 ≤ c2/2 + d (flexural shearing) and hy/2 – hy2 ≤ 

c1/2 and hx/2 – hx2 ≤ c2/2 (moment); Case VB when the neutral axis is localized hy/2 – hy2 ≤ c1/2 + 

d and hx/2 – hx2 ≥ c2/2 + d (flexural shearing) and hy/2 – hy2 ≤ c1/2 and hx/2 – hx2 ≥ c2/2 (moment); 

Case VC when the neutral axis is localized hy/2 – hy2 ≥ c1/2 + d and hx/2 – hx2 ≤ c2/2 + d (flexural 

shearing) and hy/2 – hy2 ≥ c1/2 and hx/2 – hx2 ≤ c2/2 (moment); Case VD when the neutral axis is 

localized hy/2 – hy2 ≥ c1/2 + d and hx/2 – hx2 ≥ c2/2 + d (flexural shearing) and hy/2 – hy2 ≥ c1/2 and 

hx/2 – hx2 ≥ c2/2 (moment). 

 

Case VA 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2
+𝑑

 (49) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2
+𝑑

 (50) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2

 (51) 
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𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2

 (52) 

 

Case VB 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2
+𝑑

 (53) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2
−ℎ𝑥2

𝑐2
2
+𝑑

+∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥2

 (54) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

𝑐1
2

 (55) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2
−ℎ𝑥2

𝑐2
2

+∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥2

 

(56) 

 

Case VC 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2
−ℎ𝑦2

𝑐1
2
+𝑑

+∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦2

 (57) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2
+𝑑

 (58) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2
−ℎ𝑦2

𝑐1
2

+∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦2

 

(59) 

 

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

𝑐2
2

 
(60) 
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Case VD 

 

𝑉𝑢𝑐 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2
−ℎ𝑦2

𝑐1
2
+𝑑

+∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦2

 (61) 

  

𝑉𝑢𝑒 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2
−ℎ𝑥2

𝑐2
2
+𝑑

+∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥2

 (62) 

  

𝑀𝑢𝑎 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

ℎ𝑥
2
+
ℎ𝑥1(ℎ𝑦−2𝑦)

2ℎ𝑦1
−ℎ𝑥1

ℎ𝑦

2
−ℎ𝑦2

𝑐1
2

+∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑦 −
𝑐1
2
)𝑑𝑥𝑑𝑦

ℎ𝑥
2

−
ℎ𝑥
2

ℎ𝑦

2

ℎ𝑦

2
−ℎ𝑦2

 

(63) 

  

𝑀𝑢𝑏 = ∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
) 𝑑𝑦𝑑𝑥

ℎ𝑦

2

ℎ𝑦

2
+
ℎ𝑦1(ℎ𝑥−2𝑥)

2ℎ𝑥1
−ℎ𝑦1

ℎ𝑥
2
−ℎ𝑥2

𝑐2
2

+∫ ∫ 𝜎𝑧(𝑥, 𝑦) (𝑥 −
𝑐2
2
)𝑑𝑦𝑑𝑥

ℎ𝑦

2

−
ℎ𝑦

2

ℎ𝑥
2

ℎ𝑥
2
−ℎ𝑥2

 

(64) 

 

Note: Equation (4) is substituted into equations (29) to (64) and the integrals are developed to 

obtain the final equations. 

 

2.2.2. Punching shearing 

Figure 7 shows the critical sections for punching shearing of six possible cases (Critical perimeter 

formed by points 5, 6, 7 and 8).  

For case I, it is considered that the total surface of the footing works under compression. The 

pressure generated by the soil on the footing is obtained by equation (1) (biaxial bending). 

For cases II, III, IV, V and VI consider that the total surface of the footing works partially under 

compression, i.e., part of the surface has zero pressure. The pressure generated by the soil on the 

footing is obtained by equation (4). 
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(a) Case I (b) Case II (c) Case III 

   
(d) Case IV (e) Case V (f) Case VI 

Figure 7. Punching shearing for biaxial bending 

Source: Own elaboration 

 

The general equation for the factorized punching shearing “Vup” is: 

 

Case I 

Equation (1) is substituted into equation (25) and the integral is developed to obtain the final 

equation.  

 

Case II 

The neutral axis does not reach the perimeter of the critical section; therefore, it is equation (26). 

 

Case III 

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑐2
2
+
𝑑

2

ℎ𝑥
2
−
ℎ𝑥1(2𝑦−ℎ𝑦)

2ℎ𝑦1
−ℎ𝑥1

𝑐1
2
+
𝑑

2

𝑦𝑝

 (65) 

 

where: yp = hy/2 – hy1(c2 + d – hx)/2hx1 – hy1 (If the neutral axis crosses the critical perimeter on the 

side formed by points 5 and 8) and yp = – c1/2 – d/2 (If the neutral axis crosses the critical perimeter 

on the side formed by points 7 and 8). 
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Case IV 

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦𝑝1

ℎ𝑦

2
−
ℎ𝑦1(2𝑥−ℎ𝑥)

2ℎ𝑥1
−ℎ𝑦1

𝑐2
2
+
𝑑

2

−
𝑐2
2
−
𝑑

2

−∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑐1
2
+
𝑑

2

𝑦𝑝1

𝑐2
2
+
𝑑

2

−
𝑐2
2
−
𝑑

2

 (66) 

 

where: yp1 = hy/2 + hy1(c2 + d + hx)/2hx1 – hy1. 

 

Case V 

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦𝑝1

ℎ𝑦

2
−
ℎ𝑦1(2𝑥−ℎ𝑥)

2ℎ𝑥1
−ℎ𝑦1

𝑥𝑝1

−
𝑐2
2
−
𝑑

2

−∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑐1
2
+
𝑑

2

𝑦𝑝1

𝑐2
2
+
𝑑

2

−
𝑐2
2
−
𝑑

2

−∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑦𝑝1

−
𝑐1
2
−
𝑑

2

𝑐2
2
+
𝑑

2

𝑥𝑝1

 

(67) 

 

where: xp1 = hx/2 – hx1(c1 + d – hy)/2hy1 – hx1 and yp1 = hy/2 + hy1(c2 + d + hx)/2hx1 – hy1.  

 

Case VI 

 

𝑉𝑢𝑝 = 𝑃𝑢 −∫ ∫ 𝜎𝑧(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑐1
2
+
𝑑

2

−
𝑐1
2
−
𝑑

2

𝑐2
2
+
𝑑

2

−
𝑐2
2
−
𝑑

2

 (68) 

 

where: xp1 = hx/2 – hx1(c1 + d – hy)/2hy1 – hx1 and yp1 = hy/2 + hy1(c2 + d + hx)/2hx1 – hy1.  

Note: Equation (4) is substituted into equations (65) to (68) and the integral are developed to obtain 

the final equations. 

 

3. RESULTS 
 

In this section the application of the new model is described, using the same examples to obtain 

the minimum area and the sides of a rectangular isolated footing proposed by Vela-Moreno et al. 

(2022). 

Tables 1 and 2 present the four cases to obtain the complete design of the rectangular isolated 

footings subjected to uniaxial bending. Two cases when the axial load is located on the Y axis: 

Case I-Y, when the entire contact area works under compression; Case II-Y, when the contact area 

works partially in compression. Two cases when the axial load is located on the X axis: Case I-X, 

when the entire contact area works under compression; Case II-X, when the contact area works 

partially in compression.         

Table 1 shows the results for c1 and c2 = 0.40 m, Pu = 720 kN, Mux = 360, 720, 1440, 2160 kN-m, 

Muy = 0 kN-m and σumax = 250 kN/m2. 

The procedure used is the following: 

For the case I-Y: Substituting Pu, Mux, Muy = 0, hx, hy into equation (1), and subsequently 

substituting equation (1), hx, hy, c1, c2 and d into equations (5) to (8) and (25). 

For the case II-Y: Substituting σumax, hy, hy1 into equation (2), and subsequently substituting 

equation (2), hx, hy, c1, c2 and d into equations (9) to (12) or (13) to (16), and (26) or (27) according 

to the case. 

The value of d is fixed by the equations proposed by (ACI 318S-19). 
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Table 1. Complete design of the footing when the axial load is on the Y axis. 

(Source: Own elaboration) 

Caso 

Mux 

kN-

m 

hx 

m 

hy 

m 

d 

cm 

Mua 

kN-m 

Mub 

kN-m 

Vuc 

kN 

Vue 

kN 

Vup 

kN 

Asmy 

cm2 

Asminy 

cm2 

Aspy 

cm2 

Asmx 

cm2 

Asminx 

cm2 

Aspx 

cm2 

I-Y 

360 

1.00 3.65 52 410.97 32.40 342.89 * 553.04 22.00 17.32 
22.80 

(8Ø3/4”) 
1.65 63.20 

65.55 

(23Ø3/4”) 

II-Y 1.33 3.00 32 240.38 40.54 272.63 54.38 655.20 21.10 14.17 
22.80 

(8Ø3/4”) 
3.37 31.97 

34.20 

(12Ø3/4”) 

I-Y 

720 

1.00 6.00 67 794.45 32.40 420.46 * 582.61 33.32 22.31 
34.20 

(12Ø3/4”) 
1.28 133.87 

136.89 

(27Ø1”) 

II-Y 1.00 4.67 52 468.41 22.50 322.24 * 631.92 25.28 17.32 
25.65 

(9Ø3/4”) 
1.15 80.87 

81.12 

(16Ø1”) 

I-Y 

1440 

2.00 12.00 42 1693.21 115.20 500.88 136.80 699.83 130.51 27.97 
131.82 

(26Ø1”) 
7.27 167.83 

172.38 

(34Ø1”) 

II-Y 2.00 5.33 42 894.98 80.00 499.75 95.00 720.00 61.71 27.97 
65.91 

(13Ø1”) 
5.05 74.55 

76.95 

(27Ø3/4”) 

I-Y 

2160 

2.00 18.00 52 2592.81 115.20 510.05 100.80 703.07 161.36 34.63 
162.24 

(32Ø1”) 
5.87 311.69 

314.34 

(62Ø1”) 

II-Y 2.00 7.33 37 1268.16 80.00 350.12 107.50 720.00 109.86 24.64 
111.54 

(22Ø1”) 
5.73 90.31 

91.20 

(32Ø3/4”) 

where: Asmy and Asmx are the steel areas generated by the moments in the a (Y direction) and b (X 

direction) axes, Asminy and Asminx are the minimum steel areas in both directions, Aspy and Aspx are 

the proposed steel areas in the Y and X directions (ACI 318S-19). * The axis is located outside the 

area of the footing. 

 

Table 2 shows the results for c1 and c2 = 0.40 m, Pu = 720 kN, Mux = 0 kN-m, Muy = 360, 720, 

1440, 2160 kN-m and σumax = 250 kN/m2 (same procedure used in Table 1, but with the 

corresponding equations). 

 

Table 2. Complete design of the footing when the axial load is on the X axis.  

(Source: Own elaboration) 

Caso 

Muy 

kN-

m 

hx 

m 

hy 

m 

d 

cm 

Mua 

kN-m 

Mub 

kN-m 

Vuc 

kN 

Vue 

kN 

Vup 

kN 

Asmy 

cm2 

Asminy 

cm2 

Aspy 

cm2 

Asmx 

cm2 

Asminx 

cm2 

Aspx 

cm2 

I-X 

360 

3.65 1.00 52 32.40 410.97 * 342.89 553.04 1.65 63.20 
65.55 

(23Ø3/4”) 
22.00 17.32 

22.80 

(8Ø3/4”) 

II-X 3.00 1.33 32 40.54 240.38 54.38 272.63 655.20 3.37 31.97 
34.20 

(12Ø3/4”) 
21.10 14.17 

22.80 

(8Ø3/4”) 

I-X 

720 

6.00 1.00 67 32.40 794.45 * 420.46 582.61 1.28 133.87 
136.89 

(27Ø1”) 
33.32 22.31 

34.20 

(12Ø3/4”) 

II-X 4.67 1.00 52 22.50 468.41 * 322.24 631.92 1.15 80.87 
81.12 

(16Ø1”) 
25.28 17.32 

25.65 

(9Ø3/4”) 

I-X 

1440 

12.00 2.00 42 115.20 1693.21 136.80 500.88 699.83 7.27 167.83 
172.38 

(34Ø1”) 
130.51 27.97 

131.82 

(26Ø1”) 

II-X 5.33 2.00 42 80.00 894.98 95.00 499.75 720.00 5.05 74.55 
76.95 

(27Ø3/4”) 
61.71 27.97 

65.91 

(13Ø1”) 

I-X 

2160 

18.00 2.00 52 115.20 2592.81 100.80 510.05 703.07 5.87 311.69 
314.34 

(62Ø1”) 
161.36 34.63 

162.24 

(32Ø1”) 

II-X 7.33 2.00 37 80.00 1268.16 107.50 350.12 720.00 5.73 90.31 
91.20 

(32Ø3/4”) 
109.86 24.64 

111.54 

(22Ø1”) 

 

Tables 1 and 2 present the complete design of the rectangular isolated footings subjected to uniaxial 

bending. 

Table 1 shows the following: The effective depth is governed by the flexural shearing in the c axis 

for the two cases (Mux = 360, 720, 1440 kN-m), and by the moment in the a axis for the two cases 

(Mux = 2160 kN-m). The smallest effective depth is presented in case II-Y for Mux = 360, 720, 2160 

kN-m, and for Mux = 1440 kN-m the effective depth is the same in case I-Y and II-Y. The smallest 

proposed steel area appears in case II-Y for the two cases in both directions except at Mux = 360 
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kN-m which are the same in case I-Y and II-Y in Y direction. 

Table 2 presents the following: The effective depth is governed by the flexural shearing in the e 

axis for the two cases (Muy = 360, 720, 1440 kN-m), and by the moment in the b axis for the two 

cases (Muy = 2160 kN-m). The smallest effective depth is presented in case II-X for Muy = 360, 

720, 2160 kN-m, and for Muy = 1440 kN-m the effective depth is the same in case I-X and II-X. 

The smallest proposed steel area appears in case II-X for the two cases in both directions except at 

Muy = 360 kN-m which are the same in case I-X and II-X in X direction. 

Tables 3 to 6 present the complete design of the rectangular isolated footings subjected to biaxial 

bending. 

Tables 3 to 6 present the two cases to obtain the complete design of the isolated rectangular footings 

subjected to biaxial bending, a case when the entire contact area works under compression (Case 

I), and another case when the contact area works partially under compression (the smaller area of 

cases II, III, IV and V). 

The procedure used for Tables 3 to 6 is as follows: 

For case I: Substituting Pu, Mux, Muy, hx, hy into equation (1), and later equation (1), hx, hy, c1, c2 

and d is substituted into equations (5) to (8) and (25). 

For cases II, III, IV and V: Substituting σumax, hx, hx1, hy, hy1 into equation (4), and subsequently 

substituting equation (4), hx, hx1, hy, hy1, c1, c2 and d into equations (29) to (32) (case II), into 

equations (33) to (36) (case IIIA), into equations (37) to (40) (case IIIB), into equations (41) to (44) 

(case IVA), into equations (45) to (48) (case IVB), into equations (49) to (52) (case VA), into 

equations (53) to (56) (case VB), into equations (57) to (60) (case VC), into equations (61) to (64) 

(case VD), and (26), (65) to (68) as the case may be.            

Table 3 shows the results for c1 and c2 = 0.40 m, Pu = 720 kN, Mux = 360, 720, 1440, 2160 kN-m, 

Muy = 360 kN-m and σumax = 250 kN/m2. The smallest area appears in the case V for Mux = 360 

and 720 kN-m, and in the case II for Mux = 1440 and 2160 kN-m. 

    

Table 3. Complete design of the footing for Muy = 360 kN-m. 

(Source: Own elaboration) 

Caso 

Mux 

kN-

m 

hx 

m 

hy 

m 

d 

cm 

Mua 

kN-m 

Mub 

kN-m 

Vuc 

kN 

Vue 

kN 

Vup 

kN 

Asmy 

cm2 

Asminy 

cm2 

Aspy 

cm2 

Asmx 

cm2 

Asminx 

cm2 

Aspx 

cm2 

I 

360 

6.00 6.00 27 632.43 632.43 391.39 391.39 711.02 65.04 53.95 
65.55 

(23Ø3/4”) 
65.04 53.95 

65.55 

(23Ø3/4”) 

V 2.72 2.72 22 229.25 229.25 305.04 305.04 698.58 29.25 19.93 
31.35 

(11Ø3/4”) 
29.25 19.93 

31.35 

(11Ø3/4”) 

I 

720 

6.00 12.00 27 1351.21 632.43 421.25 391.39 715.51 148.38 53.95 
152.10 

(30Ø1”) 
63.43 107.89 

111.54 

(22Ø1”) 

V 2.22 4.45 27 472.00 196.31 367.54 298.13 709.58 51.44 19.93 
55.77 

(11Ø1”) 
19.61 40.01 

42.75 

(15Ø3/4”) 

I 

1440 

6.00 24.00 32 2790.60 632.43 434.23 384.90 717.41 278.09 63.94 
278.85 

(55Ø1”) 
52.71 255.74 

258.57 

(51Ø1”) 

II 1.87 7.46 37 948.06 174.75 419.11 254.16 720.00 78.18 23.04 
79.80 

(16Ø1”) 
12.56 91.91 

94.05 

(33Ø3/4”) 

I 

2160 

6.00 36.00 42 4230.40 632.43 437.49 371.76 717.76 311.87 83.92 
314.34 

(62Ø1”) 
39.96 503.50 

507.00 

(100Ø1”) 

II 1.71 10.24 42 1428.46 165.34 447.01 210.14 720.00 109.68 23.02 
111.54 

(22Ø1”) 
10.44 143.22 

145.35 

(51Ø3/4”) 

 

Table 3 shows the following: The effective depth is governed by the punching shearing for the two 

cases (Mux = 360, 720 kN-m), and by the moment in the a axis for the two cases (Mux = 1440, 2160 

kN-m). The smallest effective depth occurs in case V for Mux = 360 kN-m, smallest effective depth 

occurs in case I for Mux = 1440 kN-m, and for Mux = 720, 2160 kN-m the effective depth is the 

same in both cases. The larger proposed steel area appears in case I for the two cases in both 

directions. 



 

   Revista ALCONPAT, 13 (2), 2023: 192 – 219 

 

New model for complete design of rectangular isolated footings taking  

into account that the contact surface works partially in compression       

                                                                                                                                      Luévanos Rojas, A. 
213 

Table 4 shows the results for c1 and c2 = 0.40 m, Pu = 720 kN, Mux = 360, 720, 1440, 2160 kN-m, 

Muy = 720 kN-m and σumax = 250 kN/m2. The smallest area appears in the case V for Mux = 360 

kN-m, and in the case II for Mux = 720, 1440 and 2160 kN-m. 

 

Table 4. Complete design of the footing for Muy = 720 kN-m. 

(Source: Own elaboration) 

Caso 
Mux 

kN-m 

hx 

m 

hy 

m 

d 

cm 

Mua 

kN-m 

Mub 

kN-m 

Vuc 

kN 

Vue 

kN 

Vup 

kN 

Asmy 

cm2 

Asminy 

cm2 

Aspy 

cm2 

Asmx 

cm2 

Asminx 

cm2 

Aspx 

cm2 

I 

360 

12.00 6.00 27 632.43 1351.21 391.39 421.25 715.51 63.43 107.89 
111.54 

(22Ø1”) 
148.38 53.95 

152.10 
(30Ø1”) 

V 4.45 2.22 27 196.31 472.00 298.13 367.54 709.58 19.61 40.10 
42.75 

(15Ø3/4”) 
51.44 19.96 

54.15 

(19Ø3/4”) 

I 

720 

12.00 12.00 27 1351.21 1351.21 421.25 421.25 717.76 139.46 107.89 
141.96 

(28Ø1”) 
139.46 107.89 

141.96 
(28Ø1”) 

II 3.73 3.73 27 430.31 430.31 392.78 392.78 720.00 44.47 33.54 
45.63 

(9Ø1”) 
44.47 33.54 

45.63 

(9Ø1”) 

I 

1440 

12.00 24.00 27 2790.60 1351.21 435.76 421.25 718.88 307.84 107.89 
309.27 

(61Ø1”) 
135.74 215.78 

218.01 

(51Ø1”) 

II 3.22 6.45 27 913.51 408.86 458.25 423.74 720.00 104.20 28.95 
106.47 

(21Ø1”) 
41.21 57.99 

59.85 

(21Ø3/4”) 

I 

2160 

12.00 36.00 27 4230.40 1351.21 440.54 421.25 719.25 508.33 107.89 
512.07 

(101Ø1”) 
134.59 323.68 

324.48 
(64Ø1”) 

II 3.00 9.00 32 1404.83 403.75 480.92 433.67 720.00 140.24 31.97 
141.96 

(28Ø1”) 
33.85 95.90 

96.90 

(34Ø3/4”) 

 

Table 5 shows the results for c1 and c2 = 0.40 m, Pu = 720 kN, Mux = 360, 720, 1440, 2160 kN-m, 

Muy = 1440 kN-m and σumax = 250 kN/m2. The smallest area appears in the case II for Mux = 360, 

720, 1440 and 2160 kN-m. 

 

Table 5. Complete design of the footing for Muy = 1440 kN-m. 

(Source: Own elaboration) 

Caso 
Mux 

kN-m 

hx 

m 

hy 

m 

d 

cm 

Mua 

kN-m 

Mub 

kN-m 

Vuc 

kN 

Vue 

kN 

Vup 

kN 

Asmy 

cm2 

Asminy 

cm2 

Aspy 

cm2 

Asmx 

cm2 

Asminx 

cm2 

Aspx 

cm2 

I 

360 

24.00 6.00 32 632.43 2790.60 384.90 434.23 717.41 52.71 255.74 
258.57 

(51Ø1”) 
278.09 63.94 

278.85 

(55Ø1”) 

II 7.46 1.87 37 174.75 948.06 254.16 419.11 720.00 12.56 91.91 
94.05 

(33Ø3/4”) 
78.18 23.04 

79.80 

(16Ø1”) 

I 

720 

24.00 12.00 27 1351.21 2790.60 421.25 435.76 718.88 135.74 215.78 
218.01 

(51Ø1”) 
307.84 107.89 

309.27 

(61Ø1”) 

II 6.45 3.22 27 408.86 913.51 423.74 458.25 720.00 41.21 57.99 
59.85 

(21Ø3/4”) 
104.20 28.95 

106.47 

(21Ø1”) 

I 

1440 

24.00 24.00 27 2790.60 2790.60 435.76 435.76 719.44 288.54 215.78 
288.99 

(57Ø1”) 
288.54 215.78 

288.99 

(57Ø1”) 

II 5.73 5.73 27 899.07 899.07 484.27 484.27 720.00 94.95 51.52 
96.33 

(19Ø1”) 
94.95 51.52 

96.33 

(19Ø1”) 

I 

2160 

24.00 36.00 27 4230.40 2790.60 440.54 435.76 719.63 451.51 215.78 
456.30 

(90Ø1”) 
283.13 323.68 

324.48 

(64Ø1”) 

II 5.41 8.12 32 1399.94 898.75 498.17 495.32 720.00 157.03 48.64 
157.17 

(31Ø1”) 
92.67 73.01 

94.05 

(33Ø3/4”) 

 

Table 4 shows the following: The effective depth is governed by the punching shearing for the two 

cases (Mux = 360, 720, 1440 kN-m), and by the moment in the a axis for the two cases (Mux = 2160 

kN-m). The smallest effective depth occurs in case I for Mux = 2160 kN-m, and for Mux = 360, 720, 

1440 kN-m the effective depth is the same in both cases. The larger proposed steel area appears in 

case I for the two cases in both directions. 

Table 5 shows the following: The effective depth is governed by the punching shearing for the two 

cases (Mux = 720, 1440, 2160 kN-m), and by the moment in the a axis for the two cases (Mux = 360 

kN-m). The smallest effective depth occurs in case I for Mux = 360 kN-m, and for Mux = 720, 1440, 
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2160 kN-m the effective depth is the same in both cases. The larger proposed steel area appears in 

case I for the two cases in both directions. 

Table 6 shows the results for c1 and c2 = 0.40 m, Pu = 720 kN, Mux = 360, 720, 1440, 2160 kN-m, 

Muy = 2160 kN-m and σumax = 250 kN/m2. The smallest area appears in the case II for Mux = 360, 

720, 1440 and 2160 kN-m. 

 

Table 6. Complete design of the footing for Muy = 2160 kN-m. 

(Source: Own elaboration) 

Caso 
Mux 

kN-m 

hx 

m 

hy 

m 

d 

cm 

Mua 

kN-m 

Mub 

kN-m 

Vuc 

kN 

Vue 

kN 

Vup 

kN 

Asmy 

cm2 

Asminy 

cm2 

Aspy 

cm2 

Asmx 

cm2 

Asminx 

cm2 

Aspx 

cm2 

I 

360 

36.00 6.00 42 632.43 4230.40 371.76 437.49 717.76 39.96 503.50 
507.00 

(100Ø1”) 
311.87 83.92 

314.34 
(62Ø1”) 

II 10.24 1.71 42 165.34 1428.46 210.14 447.01 720.00 10.44 143.22 
145.35 

(51Ø3/4”) 
109.68 23.92 

111.54 

(22Ø1”) 

I 

720 

36.00 12.00 27 1351.21 4230.40 421.25 440.54 719.63 134.59 323.68 
324.48 

(64Ø1”) 
307.84 107.89 

309.27 
(61Ø1”) 

II 9.00 3.00 32 403.75 1404.83 433.67 480.92 720.00 33.85 95.90 
96.90 

(34Ø3/4”) 
140.24 31.97 

141.96 

(28Ø1”) 

I 

1440 

36.00 24.00 27 2790.60 4230.40 435.76 440.54 719.44 283.13 323.68 
324.48 

(64Ø1”) 
451.51 215.78 

456.30 
(90Ø1”) 

II 8.12 5.41 27 898.75 1399.94 495.32 498.17 720.00 92.67 73.01 
94.05 

(33Ø3/4”) 
157.03 48.64 

157.17 

(31Ø1”) 

I 

2160 

36.00 36.00 27 4230.40 4230.40 440.54 440.54 719.75 437.69 323.68 
441.09 

(87Ø1”) 
437.69 323.68 

441.09 
(87Ø1”) 

II 7.73 7.73 32 1396.69 1396.69 498.81 498.81 720.00 149.44 69.50 
152.10 

(30Ø1”) 
149.44 69.50 

152.10 

(30Ø1”) 

 

Table 6 shows the following: The effective depth is governed by the punching shearing for the two 

cases (Mux = 1440, 2160 kN-m), and by the moment in the a axis for the two cases (Mux = 360, 720 

kN-m). The smallest effective depth occurs in case I for Mux = 720 kN-m, and for Mux = 360, 1440, 

2160 kN-m the effective depth is the same in both cases. The larger proposed steel area appears in 

case I for the two cases in both directions. 

Figure 8 shows the comparison for uniaxial bending (Axial load on the Y axis) of the current model 

(Case I-Y) and new model (Case II-Y) in terms of volume of concrete and steel of the considered 

examples. 

Figure 8 shows the following: The new model presents smaller volumes of concrete and steel in all 

cases than the current model. The smallest difference in volumes of concrete and steel occurs at 

Mux = 360 kN-m of 1.37 times for concrete and 1.31 times for steel. The biggest difference in 

volumes of concrete and steel occurs at Mux = 2160 kN-m of 3.27 times for concrete and 3.55 times 

for steel. 

Figure 9 shows the comparison for uniaxial bending (Axial load on the X axis) of the current model 

(Case I-X) and new model (Case II-X) in terms of volume of concrete and steel of the considered 

examples. 

Figure 9 presents the following: The new model presents smaller volumes of concrete and steel in 

all cases than the current model. The smallest difference in volumes of concrete and steel occurs at 

Muy = 360 kN-m of 1.37 times for concrete and 1.31 times for steel. The biggest difference in 

volumes of concrete and steel occurs at Muy = 2160 kN-m of 3.27 times for concrete and 3.55 times 

for steel. 
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(a) Concrete (b) Steel 

Figure 8. Comparison for uniaxial bending (Muy = 0) 

Source: Own elaboration 

 

  
(a) Concrete (b) Steel 

Figure 9. Comparison for uniaxial bending (Mux = 0) 

Source: Own elaboration 

 

Figure 10 shows the comparison for biaxial bending of the current model (Case I) and new model 

(Case II or V) in terms of volume of concrete and steel of the considered examples.  

 

Figure 10 shows the following: 

The new model presents smaller volumes of concrete and steel in all cases than the current model. 

The smallest differences occur at Mux = 360 kN-m for all cases in the volumes of concrete and steel 

of 5.68 times for concrete and 4.61 times for steel (Muy = 360 kN-m), 7.28 times for concrete and 

7.43 times for steel (Muy = 720 kN-m), 9.17 times for concrete and 10.69 times for steel (Muy = 

1440 kN-m), 12.33 times for concrete and 10.32 times for steel (Muy = 2160 kN-m). 

The largest differences occur at Mux = 2160 kN-m for all cases in the volumes of concrete and steel 

of 12.33 times for concrete and 10.32 times for steel (Muy = 360 kN-m), 14.00 times for concrete 

and 14.24 times for steel (Muy = 720 kN-m), 19.66 times for concrete and 13.57 times for steel 

(Muy = 1440 kN-m), 21.69 times for concrete and 13.51 times for steel (Muy = 2160 kN-m). 
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(a) Muy = 360 kN-m (b) Muy = 360 kN-m 

  
(c) Muy = 720 kN-m (d) Muy = 720 kN-m 

  
(e) Muy = 1440 kN-m (f) Muy = 1440 kN-m 

  
(g) Muy = 2160 kN-m (h) Muy = 2160 kN-m 

Concrete  Steel  

Figure 10. Comparison for biaxial bending 

Source: Own elaboration 

 

4. CONCLUSIONS 
 

This work presents a new complete design mathematical model to obtain the thicknesses and areas 

of transverse and longitudinal steel for rectangular isolated footings subjected to uniaxial and 

biaxial bending supported on elastic soils, which considers the total surface working partially under 

compression and it is assumed that the distribution of pressures on the ground is linear. 



 

   Revista ALCONPAT, 13 (2), 2023: 192 – 219 

 

New model for complete design of rectangular isolated footings taking  

into account that the contact surface works partially in compression       

                                                                                                                                      Luévanos Rojas, A. 
217 

The main contributions in this work are: 

The main contributions of this work for these examples are: 

1.- This work shows a significant reduction in the volumes of concrete and steel than the current 

model, if the contact surface with the ground working partially under compression. 

2.- This work shows a significant reduction in the volume of excavation than the current model, 

because the new model occupies less volume. 

3.- The thickness for both models are governed by moments and flexural shearing for uniaxial 

bending, and by moments and punching shearing for biaxial bending. 

4.- The new model can be used for any building code, simply taking into account the moments, the 

flexural shearing and the punching shearing that resist to define the effective depth, and the 

equations to determine the reinforcing steel areas proposed by each building code. 

5.- The new model can be used when the load Pu is located outside the central nucleus (ex/hx+ 

ey/hy>1/6), and the current model is used when load Pu is located inside the central nucleus (ex/hx+ 

ey/hy≤1/6), where ex = My/P and  ey = Mx/P.   

This works shows an effective and robust solution applied to obtain the complete design for 

rectangular isolated footings subjected to uniaxial and biaxial bending supported on elastic soils 

working partially under compression, and the variation of the pressure diagram is linear.  

The suggestions for the next research: 

1.- Complete design for combined footing (rectangular, trapezoidal, strap, corner and shaped-T) 

subjected to uniaxial and biaxial bending supported on elastic soils working partially under 

compression. 

2.- Footings supported on totally cohesive soils (clay soils) and/or totally granular soils (sandy 

soils), the pressure diagram is different, because the pressure diagram is not linear as it is presented 

in this work. 
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