Mechanical and chemical behavior of calcium sulfoaluminate cements obtained from industrial waste

M. Gallardo H., J. M. Almanza R., D. A. Cortés H., J. C. Escobedo B.

Abstract


Mechanical and chemical behavior of calcium sulfoaluminate cements obtained from industrial waste

ABSTRACT

A calcium sulfoaluminate clinker was synthesized calcining a mixture of fly ash, fluorogypsum, aluminum slag, and calcium carbonate at 1250 ºC. The clinker was mixed with 15, 20, or 25% e.p. of CaSO4·½H2O. The pastes were prepared with a water/cement ratio of 0.5. Compression resistance of cements cured in potable water and corrosive mediums at 40 ºC was evaluated. The cements cured in potable water developed compressive strengths of 38-39 MPa; those immersed in corrosive mediums showed a decrease in this property after the chemical attack. Ettringite was the main product of hydration. The degradation of the cements by chemical attack was due to a decalcification and dealumination of the pastes.

Keywords: calcium sulfoaluminate; ettringite; compressive strength; chemical attack.

 

Comportamiento mecánico y químico de cementos de sulfoaluminato de calcio obtenido a partir de desechos industriales

RESUMEN

Se sintetizó un clínker de sulfoaluminato de calcio calcinando una mezcla de ceniza volante, fluoryeso, escoria de aluminio y carbonato de calcio a 1250 °C. El clinker fue mezclado con 15, 20 o 25 % e.p. de CaSO4·½H2O. Las pastas se prepararon con relaciones agua/cemento de 0.5. Se evaluó la resistencia a la compresión de cementos curados en agua potable y en medios corrosivos a 40 °C. Los cementos curados en agua potable desarrollaron resistencias a la compresión de 38-39 MPa, los inmersos en medios corrosivos presentaron una disminución en esta propiedad después del ataque químico. La etringita fue el principal producto de hidratación. La degradación de los cementos por ataque químico es debida a una descalcificación y dealuminación de las pastas.

Palabras clave: sulfoaluminato de calcio; etringita; resistencia a la compresión; ataque químico


Comportamento químico e mecânico de cimentos de sulfoaluminato de cálcio obtidos a partir de resíduos industriais

RESUMO

Foi produzido um clínquer de sulfoaluminato de cálcio a partir da calcinação a 1250oC de uma mistura de cinza volante, escória de alumínio, carbonato de cálcio e gesso de flúor. Esse clínquer foi misturado com 15%, 20% e 25% e.p. de CaSO4·½H2O. As pastas foram preparadas com relação água/cimento igual a 0,5. Foi avaliada a resistência à compressão das pastas curadas em água potável e em meios corrosivos a 40oC. As pastas curadas em água alcançaram resistências à compressão de 38-39 MPa, enquanto as pastas imersas em meios corrosivos apresentaram uma redução da resistência frente ao ataque químico. A etringita foi o principal produto da hidratação desses cimentos. A degradação dessas pastas de cimento por ataque químico ocorreu devido a uma descalcificação e dealuminização dos produtos hidratados.

Palabras-clave: sulfoaluminato de cálcio; etringita; resistência à compressão; ataque químico.


Keywords


sulfoaluminato de calcio; etringita; resistencia a la compresión; ataque químico

References


Arjunan, P., Silsbee, M. R., Roy, D. M. (1999) “Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”, Cement and Concrete Research, Vol. 29: pp. 1305-1311.

ASTM C109/C109-M95, (1995), Standar test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens), Vol 04.01 Cement, Lime, gypsum.

ASTM C-204, (1995), Fineness of Hydraulic Cement by Air Permeability Apparatus, Annual, Book of ASTM Standars. Section 4. Construction. Volume 04.01. Cement, Lime, Gypsum.

Burciaga-Diaz, O. and Escalate-García J.I. (2012) "Strength and durability in acid media of alkali silicate activaded metakaolin geopolymers”, Journal, Vol 97, 7: pp.2307-2313

Gallardo M., Almanza J. M., Cortés D. A., Escobedo J.C., Escalante-García J. I. (2014)"Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes", Materiales de Construcción, Vol 64, 315, e023: pp. 1-8.

García-Maté M., De la Torre A., Leon-Reina L., Losilla E., Aranda M.A.G., Santacruz I. (2015), "Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement", Cement and Concrete Composites, Vol 55: pp.53-61.

Gartner, E. (2004), “Industrially interesting approaches to “low-CO2” cements", Cement and Concrete Research, Vol. 34, 9: pp. 1489–1498.

Hargis C.W., Telesca A., Monteiro P. J. M., "Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite", Cement and Concrete Research, Vol 65: pp.15-20.

Katsioti, M., Tsakiridis P.E., Agatzini-Leonardou, S., Oustadakis, P. (2005), "Examination of the jarosite–alunite precipitate addition in the raw meal for the production of Portland and sulfoaluminate-based cement s", International Journal of Mineral Processing, Vol. 76: pp. 217 – 224.

Li, H., Agrawal, D. K., Cheng, J., Silsbee, M. R. (2001), "Microwave sintering of sulphoaluminate cement with utility wastes", Cement and Concrete Research, Vol. 31: pp 1257- 1261.

Li, J., Ma, H., Zhao, H. (2007), "Preparation of sulphoaluminate-alite composite mineralogical phase cement from high alumina fly ash", Key Engineering Materials, Vol. 334-335: pp. 421-424.

Martin, J. J., Márques G., Alejandre F. J., Hernandez M. E .(2008),"Durability of API class cement pastes exposed to aqueous solutions containing choride, sulphate and magnesium ion", Materiales de construcción, Vol 58,292: pp. 1701-1707.

Mehta, P. K. (1967) “Expansion characteristics of calcium sulfoaluminate hydrates”, Journal of the American Ceramic Society, Vol. 50, 4: pp. 204–208.

Moore, A., Taylor, H. F. W. (1968), “Crystal structure of ettringite", Nature, Vol. 218: pp. 1048 – 1049.

NMX-C-061-ONNCCE-2001. (2001), Industria de la construcción-cemento-determinación de la resistencia a la compresión de cementates hidráulicos, Organismo Nacional de Normalización y Certificación para la Construcción y Edificación, México DF.

NMX-C-085-ONNCCE-2002 (2002), Industria de la construcción-Cementos hidráulicos-Método estándar para el mezclado de pastas y morteros de cementantes hidráulicos, Organismo Nacional de Normalización y Certificación para la Construcción y Edificación, México DF.

Older, I. (2005), "Cements containing calcium sulfoaluminate”, Special Inorganic Cements, Modern Concrete Technology 8, Taylor and Francis Group: pp. 63-81.

Roy, D. M. (1999), "Alkali-activated cements opportunities and challenges", Cement and Concrete Research, Vol. 29, 2: pp 249–254.

Sersale, R., Frigiones, G., Bonavita, L. (1998), "Acid depositions and concrete attack: main influences", Cement and Concrete Research, Vol. 28 pp. 19-24.

Sharp J. H., Lawrence C. D., Yang R., (1999) “Calcium sulfoaluminate cements—low-energy cements, special cements or what?”, Advances in Cement Research, Vol 11, 1: pp 3 –13

Singh, M., Kapur, P.C., Pradip. (2008),"Preparation of calcium sulphoaluminate cement using fertiliser plant wastes", Journal of Hazardous Materials, Vol. 157: pp. 106–113.

Singh, M., Upadhayay, S.N., Prasad, P.M. (1997), "Preparation of iron rich cements using red mud”, Cement and Concrete Research, Vol. 27, 7: pp. 1037–1046.

Taylor, H.F.W., Famy, C., Scrivener, K.L. (2001), "Delayed ettringite formation", Cement and Concrete Research, Vol. 31, 5: pp. 683–693.

Zhou, Q., Milestone, N.B., Hayes, M. (2006) "An alternative to Portland Cement for waste encapsulation—The calcium sulfoaluminate cement system", Journal of Hazardous Materials, Vol. 136, 1: pp. 120–129.

Zhou, Q., Milestone, N.B., Hayes, M. (2006) "An alternative to Portland Cement for waste encapsulation—The calcium sulfoaluminate cement system", Journal of Hazardous Materials, Vol. 136, 1: pp. 120–129.




DOI: http://dx.doi.org/10.21041/ra.v6i1.112

Refbacks

  • There are currently no refbacks.


 

Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017